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Abstract

A computer program calculates a pair of infinite sequences of money creation
and price level inflation rates ( ®𝜃, ®𝜇) that maximizes a benevolent time 0 govern-
ment’s objective function. The limit of a monotonically declining sequence of contin-
uation values is a worst continuation value associated with a “timeless perspective”.
The time-invariant inflation rate associated with the worst continuation Ramsey
plan is not the inflation rate associated with a restricted Ramsey plan in which a
time 0 government is constrained to choose a time-invariant money creation rate.
We Bellmanize the continuation Ramsey problem.

Key words: Artificial intelligence, machine learning, fake data, Ramsey plan, time
inconsistency, open loop, closed loop, inflation, money.
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Dedication

We are honored to have been invited to celebrate the contributions of Michel Jullard
to quantitative dynamic macroeconomics by trying to study aspects of some of Michel’s
favorite topics with some of the important tools that Michel has taught and enabled us to
use through the creation of dynare. Michel’s work illustrates how to combine high human
intelligence with machine learning in ways that help make good public policies. Along
with Kydland and Prescott (1977, 1980), Calvo (1978) set the stage for the conceptual
and computational challenges that Michel took the lead in confronting. That explains
our choice of topics.

1 Introduction

Many applications of machine learning compute a nonlinear function 𝑓 : 𝑋 → 𝑌 that
satisfies context-specific conditions. Popular contexts include:

(a) 𝑓 maximizes some functional or solves some functional equation.

(b) {𝑥𝑖, 𝑦𝑖}𝐼𝑖=1 ∈ 𝑋 𝐼
>

𝑌 𝐼 is a data set and 𝑓 is a non-linear least squares regression
function.

This paper provides interrelated examples of both types. Our first example runs regres-
sions on ‘fake data’ generated by our second application. We run those regressions to
uncover interpretable economic structure concealed by outcomes of our second applica-
tion, a discrete-time version of an optimum problem of Calvo (1978) that seeks a sequence
of money growth rates {𝜇𝑡}∞𝑡=0 that maximizes a government’s objective function at time
0. The optimizer takes the form of a function 𝑓 that maps times 𝑡 ∈ 𝑋 = {0, 1, 2, . . .} into
R. Let:

• 𝑝𝑡 be the log of the price level,

• 𝑚𝑡 be the log of nominal money balances,

• 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1,

• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances.

The government’s problem is cast in terms of these components:

• ®𝜇 = {𝜇𝑡}∞𝑡=0 is a time series of money growth rates,

• 𝜇𝑡 = {𝜇𝑡+𝑠}∞𝑠=0 is a time 𝑡 future or tail of a sequence of money growth rates,
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• ®𝜃 = {𝜃𝑡}∞𝑡=0 is a sequence of inflation rates in the price level,

• a function 𝑔 that maps the future 𝜇𝑡 of ®𝜇 at 𝑡 into the inflation rate at 𝑡, so that
𝜃𝑡 = 𝑔(𝜇𝑡),

• a social welfare criterion
𝑣0 =

∞∑
𝑡=0

𝛽𝑡𝑟(𝜇𝑡) (1)

where 𝑟(𝜇𝑡) = 𝑠(𝑔(𝜇𝑡), 𝜇𝑡), 𝑔, and 𝑠(·, ·) are known functions and 𝛽 ∈ (0, 1).

The function 𝑔 describes the behavior of private agents and markets that determine the
inflation rate 𝜋𝑡 at 𝑡 as a function of the future 𝜇𝑡 of money growth rates from time 𝑡

forward. The government knows the functions 𝑔 and 𝑟 and wants an open loop plan
𝜇𝑡 = 𝑓 (𝑡), i.e., a function of time that describes a sequence of money growth rates that
maximizes welfare criterion 𝑣0 defined in (1). Calvo (1978) is our source of 𝑠 and 𝑔.

The plan that optimizes criterion (1) is time inconsistent. The presence of the function
𝑔 in the government’s objective function tells it to recognize effects that 𝜇𝑠 for all 𝑠 ⩾ 0
have on 𝜃0 when it chooses a time series ®𝜇. A government that at time 1 chooses a
sequence ®𝜇 to maximize a welfare criterion

𝑣1 =
∞∑
𝑡=1

𝛽𝑡−1𝑟(𝜇𝑡) (2)

would not care about 𝜇0 or 𝜃0 and consequently would select a different ®𝜇 time series
than the maximizer of criterion (1).

This paper extends an analysis of a linear quadratic of Calvo’s model presented in Sargent
and Yang (2025a,b) in which the representative household’s one-period utility function
is a quadratic function of inflation and the money growth rate. That special LQ setting
affected both our choice of tools and some of the findings in ways that we shall highlight
below. While discounted linear quadratic dynamic programming was the appropriate
tool for our LQ setting, it isn’t here. And while linear regressions on “fake data” were
adequate machine learning torches there, they aren’t enough here. Furthermore, in this
paper we go further by studying a version of a classic “aggregation over time” problem y
setting the decision interval specifies the timing protocol governing when decision makers
act: the government when it sets a money growth rate, and the representative household
when it sets an expected inflation rate and a demand for money. We study how outcomes
depend on the time increment. By driving the time increment to zero we approach Calvo’s
continuous time specification.

Section 2 describes components of the model and poses the government’s planning prob-
lem. Section 3 describes a restricted plan that by construction is time consistent. Section
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4 writes the government planner’s time 0 objective as a function of a money growth rate
sequence and hands it over to a gradient ascent optimizer, an application of the same
approach applied in a linear-quadratic setting by Sargent and Yang (2025a). Section 5
extends the discrete-unit-time interval model of section 2 to a discrete Δ-time-interval
model, allowing us to approximate the original continuous time setting of Calvo (1978).
We apply our gradient ascent algorithm to this model and compare outcomes to the unit-
time-interval specification. Our gradient ascent recovers an open loop representation of
an optimal plan. Section 6 uses some “human intelligence” to guide specification of some
nonlinear least squares regressions that we apply to “fake data” in the form of the open
loop optimal plans that we computed in section 5. Those regressions detect two recursive
representations of the optimal plan; the representations differ in their specification of the
key state variable. Section 7 uses insights of Chang (1998) to decide which of the two
representations is more enlightening economically and extends an analysis presented in
Sargent and Yang (2025b) to formulate the government’s problem as a recursive deci-
sion problem. Section 8 offers concluding remarks about the roles artificial and human
intelligence in our Calvo model laboratory.

2 The Model

Calvo’s model focuses on intertemporal tradeoffs between:

• utility accruing from a representative agent’s anticipations of future deflation that
lower the agent’s cost of holding real money balances and thereby induces the agent
to increase his stock of real money balances, and

• social costs associated with the distorting taxes that a government levies to acquire
the paper money that it withdraws from circulation in order to generate prospective
deflation.

The model features:

• rational expectations,

• costly government actions at all dates 𝑡 ⩾ 1 that increase the representative agent’s
utilities at dates before 𝑡.

The model combines a demand function for real balances formulated by Cagan (1956) with
the perfect foresight or rational expectations assumed by Sargent and Wallace (1973) and
Calvo (1978).1

1Work of Olivera (1970, 1971) about passive money influenced Sargent and Wallace (1973).
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2.1 Components

There is no uncertainty. A representative agent’s demand for real balances is governed
by a perfect foresight version of a Cagan (1956) demand function:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡), 𝛼 > 0, (3)

for all 𝑡 ⩾ 0.

Equation (3) asserts that the demand for real balances is inversely related to the repre-
sentative agent’s expected rate of inflation. Because there is no uncertainty, the expected
rate of inflation equals the actual rate of inflation.2

Subtracting equation (3) at time 𝑡 from the same equation at time 𝑡 + 1 gives:

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡,

or equivalently,
𝜃𝑡 =

𝛼

1 + 𝛼𝜃𝑡+1 +
1

1 + 𝛼𝜇𝑡 . (4)

Because 𝛼 > 0, 0 < 𝛼
1+𝛼 < 1, so difference equation (4) in the 𝜃 sequence with sequence ®𝜇

as the “forcing sequence” is stable when “solved forward.”

Definition 2.1. For scalar 𝑏𝑡, let 𝐿2 be the space of sequences {𝑏𝑡}∞𝑡=0 that satisfy

∞∑
𝑡=0

𝑏2
𝑡 < +∞.

We say that a sequence that belongs to 𝐿2 is square summable.

When we assume that ®𝜇 = {𝜇𝑡}∞𝑡=0 is square summable and also require that ®𝜃 = {𝜃𝑡}∞𝑡=0
is square summable, the linear difference equation (4) can be solved forward to get:

𝜃𝑡 =
1

1 + 𝛼

∞∑
𝑗=0

( 𝛼

1 + 𝛼
) 𝑗
𝜇𝑡+ 𝑗, 𝑡 ⩾ 0. (5)

The government ®𝜇 once and for all at time 𝑡 = 0 and wants to maximize

𝑉 =
∞∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡), (6)

2When there is no uncertainty, an assumption of rational expectations becomes equivalent to
perfect foresight.
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where 𝛽 ∈ (0, 1) is a discount factor, and 𝑠(𝜃𝑡, 𝜇𝑡) is a one-period welfare function of a
benevolent government.

To capture a tradeoff between the utility of real balances and the social costs of money
creation, we assume that 𝑠(𝜃𝑡, 𝜇𝑡) is a function of 𝜃𝑡 and 𝜇𝑡 that satisfies:

𝑠(𝜃𝑡, 𝜇𝑡) = 𝑈 (−𝛼𝜃𝑡 + 𝑢0) − 𝑐(𝜇𝑡), (7)

where

• The government values a representative household’s utility of real balances at time
𝑡 according to the utility function 𝑈 : R→ R.

• The government incurs social costs 𝑐(𝜇𝑡) when it changes the stock of nominal
money balances at rate 𝜇𝑡 at time 𝑡 with 𝑐 : R → R measuring the social costs of
money creation.

We assume that 𝑈 is twice continuously differentiable, with 𝑈′(0) > 0, 𝑈′′(0) < 0, and
satisfies Inada-type conditions: lim𝑥→0+ 𝑈′(𝑥) = ∞ and lim𝑥→∞𝑈′(𝑥) = 0. This prevents
corner solutions.

We assume that cost function 𝑐 is twice continuously differentiable, with 𝑐(0) = 0, 𝑐′(𝜇𝑡) >
0 for 𝜇𝑡 > 0, 𝑐′(𝜇𝑡) < 0 for 𝜇𝑡 < 0, and 𝑐′′(𝜇𝑡) > 0. These assumptions ensure the
optimization problem is well-behaved and has a unique solution.

We focus on the case where the utility function 𝑈 is logarithmic, i.e., 𝑈 (𝑥) = log(𝑥), and
the cost function 𝑐 is polynomial. Specifically, we let

𝑈 (−𝛼𝜃𝑡 + 𝑢0) = log(−𝛼𝜃𝑡 + 𝑢0), 𝑐(𝜇𝑡) =
𝑐2
2
𝜇2
𝑡 +

𝑐3
3
𝜇3
𝑡 +

𝑐4
4
𝜇4
𝑡 , (8)

where 𝛼 > 0, 𝑢0 > 0, 𝑐2 > 0, 𝑐23 < 3𝑐2𝑐4, and 𝑐4 > 0 are parameters.

The Ramsey planner chooses a vector of money growth rates ®𝜇 to maximize criterion (6)
subject to equation (5) and the restriction:

®𝜃 ∈ 𝐿2. (9)

Equations (5) and (9) imply that ®𝜃 is a function of ®𝜇. In particular, the inflation rate 𝜃𝑡
satisfies:

𝜃𝑡 = (1 − 𝜆)
∞∑
𝑗=0

𝜆 𝑗𝜇𝑡+ 𝑗, 𝑡 ⩾ 0, (10)

with
𝜆 =

𝛼

1 + 𝛼.
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2.2 Basic Objects

Mathematical objects in play include a pair of sequences of inflation rates and money
growth rates

( ®𝜃, ®𝜇) = {𝜃𝑡, 𝜇𝑡}∞𝑡=0,

and a planner’s value function:

𝑉 =
∞∑
𝑡=0

𝛽𝑡 [𝑈 (−𝛼𝜃𝑡 + 𝑢0) − 𝑐(𝜇𝑡)]

=
∞∑
𝑡=0

𝛽𝑡
[
log(−𝛼𝜃𝑡 + 𝑢0) −

( 𝑐2
2
𝜇2
𝑡 +

𝑐3
3
𝜇3
𝑡 +

𝑐4
4
𝜇4
𝑡

)]
.

(11)

Definition 2.2. A Ramsey planner chooses ®𝜇 to maximize the government’s value func-
tion (11) subject to equation (10). A ®𝜇 that solves this problem is called a Ramsey
plan.

2.3 Timing Protocol

Calvo (1978) instructs the government to choose the money growth sequence ®𝜇 once and
for all, at or before time 0. By choosing the money growth sequence ®𝜇, the government
indirectly chooses the inflation sequence ®𝜃. So the government effectively chooses a bivari-
ate time series ( ®𝜇, ®𝜃). The government’s problem is static: it chooses all components
of a bivariate time series ( ®𝜇, ®𝜃) at time 0.

2.4 Approximation and Truncation Parameter 𝑇

We start by guessing that the sequence ®𝜇 converges under a Ramsey plan:

lim
𝑡→+∞

𝜇𝑡 = 𝜇.

Convergence of 𝜇𝑡 to 𝜇 together with equation (10) imply that:

lim
𝑡→+∞

𝜃𝑡 = 𝜃.

We’ll guess a time 𝑇 large enough that 𝜇𝑡 has gotten very close to the limit 𝜇. Then we’ll
approximate ®𝜇 by a truncated vector with the property:

𝜇𝑡 = 𝜇 ∀𝑡 ⩾ 𝑇.
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Similarly, we’ll approximate ®𝜃 with a truncated vector with the property:

𝜃𝑡 = 𝜃 ∀𝑡 ⩾ 𝑇.

In light of our approximation that 𝜇𝑡 = 𝜇 for all 𝑡 ⩾ 𝑇, we seek a function that takes

𝜇 =
[
𝜇0 𝜇1 · · · 𝜇𝑇−1 𝜇

]
as an input and gives as an output the vector

𝜃 =
[
𝜃0 𝜃1 · · · 𝜃𝑇−1 𝜃

]
,

where 𝜃 = 𝜇 and 𝜃𝑡 satisfies:

𝜃𝑡 = (1 − 𝜆)
𝑇−1−𝑡∑
𝑗=0

𝜆 𝑗𝜇𝑡+ 𝑗 + 𝜆𝑇−𝑡𝜇, (12)

for 𝑡 = 0, 1, . . . , 𝑇 − 1.

Having defined vector 𝜇 and computed the vector 𝜃 using formula (12), we can rewrite
the government’s value function (11) as

𝑉 (𝜃) =
𝑇−1∑
𝑡=0

𝛽𝑡 [𝑈 (−𝛼𝜃𝑡 + 𝑢0) − 𝑐(𝜇𝑡)] +
𝛽𝑇

1 − 𝛽
[
𝑈 (−𝛼𝜃 + 𝑢0) − 𝑐(𝜇)

]
, (13)

where 𝜃𝑡 for 𝑡 = 0, 1, . . . , 𝑇 − 1 satisfies formula (12).

3 A Restricted Optimal Plan

Our Ramsey planner chooses ®𝜇 to maximize the government’s value function (11) subject
to equations (10). It is useful to consider a distinct problem in which a planner again
chooses ®𝜇 to maximize the government’s value function (11), but now subject to equation
(10) and the additional restriction that 𝜇𝑡 = 𝜇 for all 𝑡. The solution of this problem is a
time-invariant 𝜇𝑡 = 𝜇𝐶𝑅 for all 𝑡 ⩾ 0 that attains a value 𝑉𝐶𝑅 of the Ramsey plan.3

3Computing 𝜇𝐶𝑅 with the section 4 gradient ascent algorithm by setting the sequence 𝜇𝑡 to be constant
for all 𝑡 and iterating until convergence is easy.
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4 Brute Force Gradient Ascent Algorithm

In this section, we compute the Ramsey plan by applying the same gradient ascent
algorithm that we used in Sargent and Yang (2025a). We write a Python function that
inputs a truncated ®𝜇 sequence and returns the time 0 objective of the Ramsey planner,
then hand that function to a gradient ascent optimizer. We initiate the algorithm with a
money growth sequence 𝜇𝑡 = 0 for all 𝑡 ⩾ 0, then iteratively update 𝜇 until convergence.
Figure 1 plots the Ramsey plan’s 𝜇𝑡 and 𝜃𝑡 for 𝑡 = 0, . . . , 𝑇 against 𝑡 computed by the

Figure 1: Ramsey plan ( ®𝜇 and ®𝜃)

algorithm. While 𝜃𝑡 is less than 𝜇𝑡 for low values of 𝑡, it eventually converges to the
limiting value 𝜇 of the sequence {𝜇𝑡} as 𝑡 → +∞, a consequence of how formula (5) makes
𝜃𝑡 be a weighted average of future 𝜇𝑡’s.

To compute a sequence {𝑣𝑡}𝑇𝑡=0 of “continuation values”

𝑣𝑡 =
∞∑
𝑗=𝑡

𝛽 𝑗−𝑡𝑠(𝜃 𝑗, 𝜇 𝑗)

along a Ramsey plan, we’ll start at our truncation date 𝑇 and compute

𝑣𝑇 =
1

1 − 𝛽 𝑠(𝜇, 𝜇).
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Then starting from 𝑡 = 𝑇 − 1, we’ll iterate backwards on the recursion

𝑣𝑡 = 𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1

for 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 0.

The initial continuation value 𝑣0 equals the optimized value of the Ramsey planner’s
criterion 𝑉 defined in equation (6):

𝑣0 =
∞∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡). (14)

We verify approximate equality by inspecting Figure 2, which plots 𝑣𝑡 against 𝑡 for 𝑡 =
0, . . . , 𝑇 .

The limiting value of the continuation value 𝑣𝑡 in Figure 2 is evidently approached from
above, so it is the value of the worst continuation Ramsey plan. Some researchers
recommend following this plan starting at time 0 because it is time invariant and thus
time consistent. But as Figure 2 also shows, there is another time consistent plan that is
also time consistent and attains a higher value: the Ramsey plan with 𝜇𝑡 constrained to
be a constant.4

5 A Δ-Time Interval Specification

Although Calvo (1978) formulated his model in continuous time, thus far we have formu-
lated our model in discrete time with a unit time interval. In the interests of approaching
Calvo’s continuous time specification, in this section we consider a version of the discrete-
time Ramsey problem in which the time increment is Δ ∈ (0, 1), so that now we assume
the 𝑡 = 0, Δ, 2Δ, 3Δ, . . ., 𝑝𝑡+Δ = 𝑝𝑡 + Δ𝜃𝑡, and 𝑚𝑡+Δ = 𝑚𝑡 + Δ𝜇𝑡. The government’s value
function becomes:

𝑉 =
∞∑
𝑡=0

exp(−𝜌𝑡Δ)𝑠(𝜃𝑡, 𝜇𝑡)Δ (15)

for 𝑡 = 0, Δ, 2Δ, . . ., subject to the constraints

𝜃𝑡 = exp(−𝛾Δ)𝜃𝑡+Δ + (1 − exp(−𝛾Δ))𝜇𝑡, (16)
4For further analysis of this topic in the setting a a linear-quadratic version of Calvo’s model, please

see Sargent and Yang (2025b).
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Figure 2: Continuation values 𝑣𝑡

where 𝜌, 𝛾 are related to 𝛽 and 𝜆 through:

exp(−𝜌) = 𝛽

exp(−𝛾) = 𝜆 =
𝛼

1 + 𝛼.

When computing the Ramsey plan using the gradient ascent algorithm, we set 𝑇Δ = 𝑇
Δ .

We again approximate the Ramsey plan using both the gradient ascent algorithm.

Figure 3 indicates that shapes of ( ®𝜇, ®𝜃) resemble those for the unit-time-interval Ramsey
problem.

5.1 Outcomes with different Δ time intervals

Figure 4 displays the computed ®𝜇 sequences for Δ = 0.001 (designed to approximate a
continuous-time setting) and Δ = 1 (our initial unit-time interval specification). The time
interval Δ affects outcomes because of how it influences both the objective function in
equation (15) and the constraint equation (16).

Several key distinctions emerge from varying Δ:
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Figure 3: Ramsey plan ( ®𝜇 and ®𝜃) at Δ = 0.001.

Figure 4: Comparison of money growth rates ®𝜇 between near-continuous time (Δ =
0.001) and discrete time (Δ = 1) Ramsey plans. Constrained-to-constant 𝜇𝐶𝑅 is invariant
to Δ specifications.



13

• The government in the small Δ-time specification makes decisions more often, con-
trolling the money growth rate at each smaller time step Δ.

• The effective discount rate between adjacent decision points is exp(−𝜌Δ) rather
than exp(−𝜌), resulting in less aggressive discounting between adjacent decision
times when Δ is small.

• Equation (16) shows that relationships between current and future inflation rates
differ across different Δ’s. That affects intertemporal tradeoffs confronting the gov-
ernment.

Comparing the optimal money growth trajectories, we observe two notable differences:
the Δ-time Ramsey plan with Δ = 0.001 features a higher initial money growth rate 𝜇0

but converges to a lower value 𝜇. Evidently as we approach continuous time, the optimal
policy front-loads inflation more but ultimately converges to a lower rate of money growth
and inflation.

These differences highlight the influence of the time increment Δ on the optimal policy.
The ability to adjust the money growth rate more often shapes an optimal policy.

6 Human Intelligence

We have represented a Ramsey plan in the open loop form of a function

𝜇𝑡 = 𝑓 (𝑡) (17)

that maps 𝑡 ∈ {0, Δ, 2Δ, . . . , } to 𝜇𝑡 ∈ R. Figures 1 and 4 indicate that the Ramsey
planner makes both ®𝜇 and ®𝜃 vary over time.

• ®𝜃 and ®𝜇 both decline monotonically.

• ®𝜃 and ®𝜇 converge from above to a common constant 𝜇.

While the open loop representation of a Ramsey plan respects the Ramsey problem’s
purpose to choose a sequence ®𝜇 once-and-for-all at time 0. Many macroeconomists and
control theorists prefer a closed loop representation of a Ramsey plan that takes the
form of a pair of functions

𝜇𝑡 = 𝑚(𝑧𝑡)
𝑧𝑡+Δ = 𝑛(𝑧𝑡),

where 𝑧𝑡 is a state vector. The second equation is a transition equation for 𝑧𝑡+Δ, and 𝑧𝑅0
is a value that the Ramsey planner chooses for the initial state vector.
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If present at all, a recursive structure in the ®𝜇, ®𝜃 chosen by our machine-learning Ramsey
planner lies hidden from view. Let’s try to bring it out by again using machine learning.
We’ll proceed by viewing Ramsey outcomes ®𝜇𝑅, ®𝜃𝑅, ®𝑣𝑅 as “fake data” on which we’ll run
some exploratory, possibly nonlinear, least squares regressions.5

We add some human intelligence to the artificial intelligence embodied in our
Python programs by formulating specifications of regressions to run on our “fake data”.
We begin by computing least squares linear regressions of some components of ®𝜃𝑅, ®𝜇𝑅,
and ®𝑣𝑅 on components of ®𝜃𝑅 or ®𝜇𝑅, hoping that these regressions will reveal structure
hidden within the ®𝜇𝑅, ®𝜃𝑅 sequences associated with a Ramsey plan.

Let’s pause to think about roles being played here by human and artificial intelligence.
Artificial intelligence in the form of a computer program runs the regressions. But one
can regress anything on anything else. Human intelligence, such as it is, must tell us
what regressions to run. Human intelligence will be required fully to appreciate what
those regressions reveal about the structure of a Ramsey plan.

Our machine-learned Ramsey plan ®𝜇𝑅, ®𝜃𝑅 constitutes the “fake” data set that we use to
run regressions in Table 1 and Table 2. Table 1 reports several regressions with 𝜇𝑡 as the
independent variable, while Table 2 reports several regressions with 𝜃𝑡 as the independent
variable.

We begin by focusing on the first entry in Table 1 that reports outcomes from regressing
𝜃𝑡 on a constant and 𝜇𝑡. This seems natural because equation (5) asserts that inflation
at time 𝑡 is determined by the money growth sequence {𝜇𝑠}∞𝑠=𝑡. After all, since a Ramsey
planner chooses a money growth sequence, shouldn’t money growth be the “exogenous
variable” in our regressions? We’ll return to this question soon.

The first entry of Table 1 reports the least squares affine regression 𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝜀𝑡,
where 𝜀𝑡 is a least squares residual that is by construction orthogonal to 𝜇𝑡.

That the 𝑅2 is 0.989 indicates that there is a non-trivial residual 𝜀𝑡 that is orthogonal to
𝜇𝑡. To improve the fit, the second entry in Table 1 shows a cubic regression model. The
regression uncovers the following representation of 𝜃𝑡 as a function of 𝜇𝑡

𝜃𝑡 = −0.0701 + 1.0759𝜇𝑡 + 1.4626𝜇2
𝑡 + 0.6133𝜇3

𝑡 .

We plot the regression line in the left panel of Figure 5. The dots indicate (𝜇𝑡, 𝜃𝑡) pairs
for 𝑡 = 0, Δ, 2Δ, . . . that converge from above to a limiting pair (𝜇, 𝜃).

In hopes of discovering a law of motion for ®𝜇 under the Ramsey plan, the third entry of
Table 1 reports the least squares affine regression 𝜇𝑡+Δ = 𝑑0 + 𝑑1𝜇𝑡 + 𝜀𝑡, where, recycling

5Thus, our “fake data” set is just the Ramsey plan generated by our open loop formula for 𝜇𝑡 as a
function of 𝑡 and formula (5) that takes the future 𝜇𝑡 and maps it into 𝜃𝑡.
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Table 1: Regression results with 𝜇𝑡 as independent variable

Model Variable Coefficient Std. Error t-statistic

𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝜀𝑡
Constant (𝑏0) -0.0914 0.000 -786.548
𝜇𝑡 (𝑏1) 0.6588 0.000 1346.446
𝑅2 = 0.989

𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝑏2𝜇2
𝑡 + 𝑏3𝜇3

𝑡 + 𝜀𝑡

Constant (𝑏0) -0.0701 3.68 × 10−5 -1905.508
𝜇𝑡 (𝑏1) 1.0759 0.001 1002.001
𝜇2
𝑡 (𝑏2) 1.4626 0.008 174.001

𝜇3
𝑡 (𝑏3) 0.6133 0.019 32.817

𝑅2 = 1.000

𝜇𝑡+Δ = 𝑑0 + 𝑑1𝜇𝑡 + 𝜀𝑡
Constant (𝑑0) −7.627 × 10−5 2.03 × 10−7 -375.168
𝜇𝑡 (𝑑1) 0.9997 8.56 × 10−7 1.17 × 106

𝑅2 = 1.000

𝑣𝑡 = 𝑔̃0 + 𝑔̃1𝜇𝑡 + 𝑔̃2𝜇2
𝑡 + 𝜀𝑡

Constant (𝑔̃0) 4.4947 4.76 × 10−5 9.44 × 104

𝜇𝑡 (𝑔̃1) 0.3896 0.001 547.298
𝜇2
𝑡 (𝑔̃2) -0.0792 0.002 -36.494

𝑅2 = 0.998

𝑣𝑡 = 𝑔̃0 + 𝑔̃1𝜇𝑡 + 𝑔̃2𝜇2
𝑡 + 𝑔̃3𝜇3

𝑡 + 𝜀𝑡

Constant (𝑔̃0) 4.4897 3.88 × 10−5 1.16 × 105

𝜇𝑡 (𝑔̃1) 0.1906 0.001 168.432
𝜇2
𝑡 (𝑔̃2) -1.7427 0.009 -196.743

𝜇3
𝑡 (𝑔̃3) -3.7386 0.020 -189.847

𝑅2 = 0.999

𝑣𝑡 = 𝑔̃0 + 𝑔̃1𝜇𝑡 + 𝑔̃2𝜇2
𝑡 + 𝑔̃3𝜇3

𝑡 + 𝑔̃4𝜇4
𝑡 + 𝜀𝑡

Constant (𝑔̃0) 4.4855 9.54 × 10−6 4.7 × 105

𝜇𝑡 (𝑔̃1) -0.0963 0.000 -210.737
𝜇2
𝑡 (𝑔̃2) -6.1852 0.006 -960.114

𝜇3
𝑡 (𝑔̃3) -27.5885 0.034 -822.267

𝜇4
𝑡 (𝑔̃4) -41.3858 0.058 -715.488

𝑅2 = 1.000
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Figure 5: Regression of 𝜃𝑡 on a constant, 𝜇𝑡, 𝜇2
𝑡 , and 𝜇3

𝑡 (left), regression of 𝜇𝑡+Δ on a
constant and 𝜇𝑡 (center), and regression of 𝑣𝑡 on a constant, 𝜇𝑡, 𝜇2

𝑡 , 𝜇3
𝑡 , and 𝜇4

𝑡 (right).
The orange line denotes the value of 𝑉𝐶𝑅 (right).

notation, 𝜀𝑡 is now a least squares residual that is by construction orthogonal to 𝜇𝑡. We
obtained a nearly perfect fit (𝑅2 = 1.000) and have discovered the following approximate
Ramsey planner’s law of motion for ®𝜇𝑅

𝜇𝑡+Δ = −7.627 × 10−5 + 0.9997𝜇𝑡 .

We plot the regression line in the middle panel of Figure 5. Here the dots indicate
(𝜇𝑡, 𝜇𝑡+Δ) pairs for 𝑡 = 0, Δ, 2Δ, . . . that converge from above to a limiting pair (𝜇, 𝜇).

The fourth entry of Table 1 reports a least squares regression of 𝑣𝑡 on a constant, 𝜇𝑡, and
𝜇2
𝑡 . The 𝑅2 is 0.998, indicating that there is a small residual 𝜀𝑡 that is orthogonal to both
𝜇𝑡 and 𝜇2

𝑡 . In search for a perfect fit, we increase the order of the polynomial in the fifth
and sixth entries of Table 1 to third and fourth degree, respectively, and obtain a perfect
fit (𝑅2 = 1.000) with the fourth-degree polynomial. The regression uncovers the following
representation of 𝑣𝑡 as a function of 𝜇𝑡

𝑣𝑡 = 4.4855 − .0963𝜇𝑡 − 6.1852𝜇2
𝑡 − 27.5885𝜇3

𝑡 − 41.3858𝜇4
𝑡 .

with the regression curve plotted in the right panel of Figure 5. The results show that
the relationship between 𝑣𝑡 and 𝜇𝑡 is well-approximated by a quadratic function, though
the small residuals indicate some additional complexity in the relationship that is only
fully captured by quartic terms.

Assembling our regressions, we have discovered that along a single Ramsey outcome path
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®𝜇𝑅, ®𝜃𝑅 the following relationships prevail:

𝜇0 = 𝜇𝑅0

𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝑏2𝜇
2
𝑡 + 𝑏3𝜇

3
𝑡

𝜇𝑡+Δ = 𝑑0 + 𝑑1𝜇𝑡,

(18)

where 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑑0, 𝑑1 are parameters whose values we estimated with our regressions;
we unearthed initial value 𝜇𝑅0 along with other components of ®𝜇𝑅, ®𝜃𝑅 when we computed
the Ramsey plan. In addition, we learned that along our Ramsey plan, continuation
values are described by the quartic equation

𝑣𝑡 = 𝑔̃0 + 𝑔̃1𝜇𝑡 + 𝑔̃2𝜇
2
𝑡 + 𝑔̃3𝜇

3
𝑡 + 𝑔̃4𝜇

4
𝑡 .

We discovered these relationships by running regressions and noticing that the 𝑅2’s of
approximately unity tell us that the fits are nearly perfect.

6.1 Direction of fit?

Instead of taking 𝜇𝑡 as the “independent” (i.e., right hand side) variable, let’s temporarily
put 𝜃𝑡 on the right hand side. A plausible case for putting 𝜃𝑡 and not 𝜇𝑡 on the right hand
side could be that the Ramsey planner is “inflation targeting,” just as many governments
today tell their central banks to do. The four entries of Table 2 report results.
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Table 2: Regression results with 𝜃𝑡 as independent variable

Model Variable Coefficient Std. Error t-statistic

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡 + 𝜀𝑡
Constant (𝑏0) 0.1347 0.000 492.179
𝜃𝑡 (𝑏1) 1.5012 0.001 1346.446
𝑅2 = 0.989

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡 + 𝑏2𝜃2
𝑡 + 𝑏3𝜃3

𝑡 + 𝜀𝑡

Constant (𝑏0) 0.0916 0.000 278.792
𝜃𝑡 (𝑏1) 1.5197 0.006 247.017
𝜃2
𝑡 (𝑏2) 4.5951 0.036 128.601
𝜃3
𝑡 (𝑏3) 14.9799 0.065 229.423
𝑅2 = 1.000

𝜃𝑡+Δ = 𝑑0 + 𝑑1𝜃𝑡 + 𝜀𝑡
Constant (𝑑0) −9.34 × 10−5 1.9 × 10−7 -492.204
𝜃𝑡 (𝑑1) 0.9997 7.73 × 10−7 1.29 × 106

𝑅2 = 1.000

𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃2
𝑡 + 𝑔3𝜃3

𝑡 + 𝜀𝑡

Constant (𝑔0) 4.4713 4.94 × 10−5 9.05 × 104

𝜃𝑡 (𝑔1) -0.5225 0.001 -564.994
𝜃2
𝑡 (𝑔2) -4.5673 0.005 -850.320
𝜃3
𝑡 (𝑔3) -5.1838 0.010 -528.132
𝑅2 = 1.000

Figure 6: Regression of 𝜇𝑡 on a constant, 𝜃𝑡, 𝜃2
𝑡 , and 𝜃3

𝑡 (left), regression of 𝜃𝑡+Δ on a
constant and 𝜃𝑡 (center), and regression of 𝑣𝑡 on a constant, 𝜃𝑡, 𝜃2

𝑡 , and 𝜃3
𝑡 (right). The

orange line depicts 𝑉𝐶𝑅 (right).

Taking stock, our regression with 𝜃𝑡 on the right side tells us that along the Ramsey
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outcome ®𝜇𝑅, ®𝜃𝑅, the affine function 𝜇𝑡 = 0.1347 + 1.5012𝜃𝑡 provides a good initial fit for
the relationship between 𝜇𝑡 and 𝜃𝑡, with 𝑅2 = 0.989. However, the cubic model improves
the fit to be nearly perfect (𝑅2 = 1.000):

𝜇𝑡 = 0.0916 + 1.5197𝜃𝑡 + 4.5951𝜃2
𝑡 + 14.9799𝜃3

𝑡 .

Similarly, the following linear regression of 𝜃𝑡+1 on 𝜃𝑡 fits perfectly:

𝜃𝑡+Δ = −9.34 × 10−5 + 0.9997𝜃𝑡 .

For the continuation values, the cubic regression has 𝑅2 = 1.000, indicating a perfect fit:

𝑣𝑡 = 4.4713 − 0.5225𝜃𝑡 − 4.5673𝜃2
𝑡 − 5.1838𝜃3

𝑡 .

Thus, we have discovered that along a single Ramsey outcome path ®𝜇𝑅, ®𝜃𝑅 the following
relationships prevail:

𝜃0 = 𝜃𝑅0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡 + 𝑏2𝜃
2
𝑡 + 𝑏3𝜃

3
𝑡

𝜃𝑡+Δ = 𝑑0 + 𝑑1𝜃𝑡,

(19)

where 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑑0, 𝑑1 are parameters whose values we estimated with our regressions;
we unearthed the initial value 𝜃𝑅0 along with other components of ®𝜇𝑅, ®𝜃𝑅 when we com-
puted the Ramsey plan. In addition, we learned that along our Ramsey plan, continuation
values are perfectly described by the cubic function

𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃
2
𝑡 + 𝑔3𝜃

3
𝑡 .

As with our earlier regressions with 𝜇𝑡 on the right side, we discovered these relationships
by running regressions, examining the results, and noting the perfect 𝑅2 values that
indicate excellent fits.

The right panel of Figure 6 shows that the highest continuation value 𝑣0 at 𝑡 = 0 appears
near the peak of the cubic function 𝑔0+𝑔1𝜃𝑡+𝑔2𝜃2

𝑡 +𝑔3𝜃3
𝑡 . Subsequent values of 𝑣𝑡 for 𝑡 ⩾ 1

appear to the lower left of the pair (𝜃0, 𝑣0) and converge monotonically from above to the
limiting value at time 𝑇. The value 𝑉𝐶𝑅 attained by the Ramsey plan that is restricted
to use a constant 𝜇𝑡 = 𝜇𝐶𝑅 sequence appears as a horizontal line.

6.2 What machine learning taught us

We have discovered that the Ramsey plan for ®𝜇 seems to have a recursive structure. But
by using the methods and ideas that we have deployed here, it is challenging to say more.
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We have discovered two closed-loop representations of a Ramsey plan and the associated
continuation value sequence, one with 𝜇𝑡 as the right-hand side “independent variable”,
the other with 𝜃𝑡 as the right-hand side variable. Both are valid representations. Which
representation is better in terms of understanding forces shaping the plan?

To answer that question, we deploy economic theory presented by Chang (1998), who
showed that (19) is actually a better way to represent a Ramsey plan.

Chang noted that equation (5) indicates that an equivalence class of continuation money
growth sequences {𝜇𝑡+ 𝑗}∞𝑗=0 deliver the same 𝜃𝑡. Consequently, equations (3) and (5)
describe how 𝜃𝑡 intermediates how the government’s choices of 𝜇𝑡+ 𝑗, 𝑗 = 0, Δ, . . . impinge
on time 𝑡 real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡 and thereby on time 𝑡 welfare.

We can appreciate Chang’s reasoning by thinking about the following “machine learning”
procedure for computing continuation values from time 0 that start from an arbitrary
initial inflation rate 𝜃0. For each 𝜃0 ∈ R, define a set

Ω(𝜃0) =
{
{𝜃𝑡+Δ, 𝜇𝑡}∞𝑡=0 : 𝜃𝑡+Δ =

1
𝜆
𝜃𝑡 −

1 − 𝜆
𝜆

𝜇𝑡, ∀𝑡 ⩾ 0
}
, (20)

where 𝜆 = exp(−𝛾Δ).

For a given 𝜃0, think about using machine learning to compute a closed loop policy

𝜃𝑡 = 𝑓 (𝑡; 𝜃0), 𝑡 ⩾ Δ

that solves the maximization problem on the right side of the following equation that
defines a continuation value function 𝐽 (𝜃0):

𝐽 (𝜃0) = max
{𝜃𝑡+Δ,𝜇𝑡}∞𝑡=0∈Ω(𝜃0)

∞∑
𝑡=0

exp(−𝜌𝑡Δ)𝑠(𝜃𝑡, 𝜇𝑡)Δ.

If we were to do this for a set possible 𝜃0’s, we could then hand the function 𝐽 (𝜃0) over
to our Ramsey planner and compute the Ramsey planner’s choice of 𝜃0 according to

𝜃𝑅0 = arg max
𝜃

𝐽 (𝜃)

and the value of the Ramsey plan as

𝑣𝑅0 = max
𝜃

𝐽 (𝜃).

This takes us to a formulation of Chang (1998) that we present in the next section.
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7 Dynamic Programming

We present Chang (1998)’s recursive formulation of the Ramsey problem and solve it using
optimistic policy iteration (OPI). We show that both discrete time and near-continuous
time models can be solved using the same dynamic programming (DP) formulation. We
first treat the discrete time model with Δ = 1 and then show how to extend the analysis to
the near-continuous time model with Δ = 0.001 in section 7.1.1 by replacing the discount
factor and scaling the welfare function.

We approximate the feasible inflation rates via discretization. Let Θ ⊂ R denote a finite
set of feasible inflation rates. In our setting, Θ is a discretized points in the interval [𝜃, 𝜃].
The following version of equation (4) links the current state 𝜃, the control variable 𝜇, and
the future state 𝜃′

𝜃 =
𝛼

1 + 𝛼𝜃
′ + 1

1 + 𝛼𝜇. (21)

Define a correspondence Γ𝜇 : Θ→ 2R that describes the feasible set of choices of 𝜇 given
the current state 𝜃

Γ𝜇 (𝜃) =
{
𝜇 ∈ R : (1 + 𝛼)𝜃 − 𝜇

𝛼
∈ Θ

}
.

We formulate the Ramsey problem sequentially by posing two subproblems.

7.1 Subproblem 1

We seek a function 𝐽 : Θ→ R that satisfies the Bellman equation

𝐽 (𝜃) = sup
(𝜃′,𝜇)∈Θ×Γ𝜇 (𝜃)

{𝑠(𝜃, 𝜇) + 𝛽𝐽 (𝜃′)}. (22)

By solving equation (21) for 𝜇, we get

𝜇 = (1 + 𝛼)𝜃 − 𝛼𝜃′. (23)

Substitute this into (22) to get

𝐽 (𝜃) = sup
𝜃′∈Θ
{𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜃′) + 𝛽𝐽 (𝜃′)}. (24)

Bellman equation (24) is an instance of a Recursive Decision Process (RDP) R = (Γ,V, 𝐵)
(see Sargent and Stachurski (2025, ch. 8)) in which

• Γ(𝜃) ≔ {𝜃′ ∈ Θ : 𝜇 = (1 + 𝛼)𝜃 − 𝛼𝜃′, 𝜇 ∈ Γ𝜇 (𝜃)} is the feasible correspondence;

• V ≔ RΘ is the value space;
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• 𝐵 : G ×V → R is the value aggregator defined by:

𝐵(𝜃, 𝜃′, 𝐽) ≔ 𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜃′) + 𝛽𝐽 (𝜃′), (25)

where G ≔ {(𝜃, 𝜃′) ∈ Θ × Θ : 𝜃′ ∈ Γ(𝜃)}.

The right side of (24) describes the decision problem of a continuation Ramsey plan-
ner has been told to deliver what Chang calls promised inflation 𝜃 today by choosing
money creation today and promised inflation tomorrow. Here the understanding is that
promised inflation must always equal actual inflation, a ramification of rational expecta-
tions.

Let Σ ≔ {𝜎(𝜃) ∈ Γ(𝜃) for all 𝜃 ∈ Θ} denote the set of feasible policies where 𝜎(𝜃) is the
policy function that maps 𝜃 to 𝜃′.

Proposition 7.1. The triple R = (Γ,V, 𝐵) forms a well-defined RDP.

Proof. We must verify required consistency and monotonicity conditions. Consistency
condition clearly holds. So we only need to verify the monotonicity condition.

For any 𝑄, 𝐾 ∈ V with 𝑄 ⩽ 𝐾 and any feasible pair (𝜃, 𝜃′) ∈ G:

𝐵(𝜃, 𝜃′, 𝐾) − 𝐵(𝜃, 𝜃′, 𝑄) = 𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜃′) + 𝛽𝐾 (𝜃′)
− [𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜃′) + 𝛽𝑄(𝜃′)]

= 𝛽 [𝐾 (𝜃′) − 𝑄(𝜃′)] ⩾ 0 (26)

since 𝛽 > 0 and 𝐾 (𝜃′) ⩾ 𝑄(𝜃′) for all 𝜃′ ∈ Θ. □

Define the Bellman operator 𝑇 : RΘ → RΘ by:

(𝑇 𝐽) (𝜃) = sup
𝜃′∈Θ
{𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜃′) + 𝛽𝐽 (𝜃′)},

where RΘ is the space of real-valued functions on Θ equipped with the sup norm ‖𝐽‖ =
sup𝜃∈Θ |𝐽 (𝜃) |.

For any policy 𝜎 ∈ Σ, define the policy operator 𝑇𝜎 : RΘ → RΘ by:

(𝑇𝜎𝐽) (𝜃) = 𝐵(𝜃, 𝜎(𝜃), 𝐽) = 𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜎(𝜃)) + 𝛽𝐽 (𝜎(𝜃)).

For a policy 𝜎, we define 𝑠𝜎(𝜃) ≔ 𝑠(𝜃, (1+𝛼)𝜃−𝛼𝜎(𝜃)). Using this notation, we can write:

(𝑇𝜎𝐽) (𝜃) = 𝑠𝜎(𝜃) + 𝛽𝐽 (𝜎(𝜃)).
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The lifetime value of policy 𝜎, denoted by 𝐽𝜎, can be expressed as the infinite sum:

𝐽𝜎 =
∞∑
𝑡=0

𝛽𝑡𝑠𝜎(𝜃𝑡).

Theorem 7.2. For each policy 𝜎 ∈ Σ, the policy operator 𝑇𝜎 is a contraction mapping
with modulus 𝛽.

Proof. For any 𝑄, 𝐾 ∈ V and 𝜃 ∈ Θ:

| (𝑇𝜎𝑄)(𝜃) − (𝑇𝜎𝐾)(𝜃) | = |𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜎(𝜃)) + 𝛽𝑄(𝜎(𝜃)) (27)
− 𝑠(𝜃, (1 + 𝛼)𝜃 − 𝛼𝜎(𝜃)) − 𝛽𝐾 (𝜎(𝜃)) |

= |𝛽𝑄(𝜎(𝜃)) − 𝛽𝐾 (𝜎(𝜃)) |
= 𝛽 |𝑄(𝜎(𝜃)) − 𝐾 (𝜎(𝜃)) |
⩽ 𝛽 sup

𝜃′∈Θ
|𝑄(𝜃′) − 𝐾 (𝜃′) |

= 𝛽‖𝑄 − 𝐾‖. (28)

Taking the supremum over 𝜃 ∈ Θ:

‖𝑇𝜎𝑄 − 𝑇𝜎𝐾‖ = sup
𝜃∈Θ
| (𝑇𝜎𝑄) (𝜃) − (𝑇𝜎𝐾)(𝜃) | ⩽ 𝛽‖𝑄 − 𝐾‖. (29)

Since 𝛽 ∈ (0, 1), 𝑇𝜎 is a contraction mapping with modulus 𝛽. □

By Theorem 7.2, the policy operator 𝑇𝜎 is a contraction mapping for any policy 𝜎, hence
it is globally stable. Therefore, R is globally stable.

We present the OPI algorithm for solving the discrete-time Ramsey problem in Algo-
rithm 1. Since R is globally stable, Theorem 8.1.1 of Sargent and Stachurski (2025)
guarantees convergence of the OPI sequence of value functions 𝐽𝑘 to the unique solution
to the Bellman equation in V. Moreover, the theorem ensures the existence of a 𝐾 ∈ N
beyond which the policy 𝜎𝑘 remains optimal for all 𝑘 ⩾ 𝐾. The upper panel of Fig-
ure 7 shows the value function 𝐽 computed using the OPI algorithm for the discrete-time
Ramsey problem.
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Algorithm 1: Optimistic Policy Iteration for Discrete-time Ramsey Problem
Require:

Parameters: 𝑚 ∈ N (number of policy operator iterations)
𝜏 ⩾ 0 (convergence tolerance)
𝑁 ∈ N (maximum number of iterations)
Initial policy 𝜎0 : Θ→ Θ

Model parameters: 𝛼 = 1.0, 𝑢0 = 2.0, 𝑐2 = 6.0, 𝑐3 = 25.0, 𝑐4 = 40.0, 𝛽 = 0.85
1: Define a set of grid points Θ ⊂ R
2: Initialize value function 𝐽0(𝜃) for all 𝜃 ∈ Θ using 𝜎0
3: Set iteration counter: 𝑘← 0
4: repeat
5: for each 𝜃 ∈ Θ do
6: 𝜎𝑘(𝜃) ∈ arg max𝜃′∈Θ

{
𝑠
(
𝜃, (1+𝛼)𝜃−𝛼𝜃′

)
+ 𝛽 𝐽𝑘(𝜃′)

}
; // Compute 𝐽𝑘-greedy 𝜎𝑘

7: end for
8: 𝐽𝑘+1 ← 𝑇𝑚𝜎𝑘 𝐽𝑘, ; // Apply policy operator 𝑇𝜎𝑘 𝑚 times
9: if ‖𝐽𝑘+1 − 𝐽𝑘‖ ⩽ 𝜏 then

10: break
11: end if
12: 𝑘← 𝑘 + 1
13: until 𝑘 ⩾ 𝑁
14: return 𝜎𝑘, 𝐽𝑘

7.1.1 Δ-time Formulation

We can formulate the Ramsey problem in near-continuous time by rewriting the constraint
on the right hand side of (20) as

𝜇 =
1

1 − 𝜆
𝜃 − 𝜆

1 − 𝜆
𝜃′. (30)

We now use 𝜃 and 𝜃′ to denote the current and next state with 𝜃′ = 𝜃𝑡+Δ in near-continuous
time.

Substituting this into the near-continuous time version of the Bellman equation (22) gives
us

𝐽 (𝜃𝑡) = sup
𝜃′∈Θ

{
𝑠

(
𝜃,

1
1 − 𝜆

𝜃 − 𝜆

1 − 𝜆
𝜃′
)
Δ + exp(−𝜌Δ)𝐽 (𝜃′)

}
. (31)

The corresponding policy operator is given by

(𝑇𝜎𝐽) (𝜃𝑡) = 𝑠𝜎(𝜃)Δ + exp(−𝜌Δ)𝐽 (𝜎(𝜃)),

where 𝑠𝜎(𝜃𝑡) = 𝑠
(
𝜃𝑡,

1
1−𝜆̃𝜃𝑡 −

𝜆̃
1−𝜆̃𝜎(𝜃𝑡)

)
.

Since exp(−𝜌Δ) = 𝛽Δ < 1 for Δ > 0, the policy operator 𝑇𝜎 is a contraction mapping with
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modulus 𝛽Δ. Thus, results in Theorem 7.2 hold for the near-continuous time version of
the Ramsey problem as well. The OPI algorithm for solving the near-continuous time
Ramsey problem is similar to the discrete-time version, with the only difference being that
we replace the discount factor 𝛽 with exp(−𝜌Δ) and scale the welfare function by Δ. The
OPI algorithm for the near-continuous time Ramsey problem is given in Algorithm 2. The
middle panel of Figure 7 shows the value function 𝐽 computed using the OPI algorithm
for the near-continuous time Ramsey problem.

Algorithm 2: Optimistic Policy Iteration for Δ-time Ramsey Problem
Require:

Parameters: 𝑚 ∈ N (number of policy operator iterations)
𝜏 ⩾ 0 (convergence tolerance)
𝑁 ∈ N (maximum number of iterations)
Initial policy 𝜎0 : Θ→ Θ

Model parameters: 𝛼 = 1.0, 𝑢0 = 2.0, 𝑐2 = 6.0, 𝑐3 = 25.0, 𝑐4 = 40.0,
𝛾 = − ln(𝜆) = 0.6931, 𝜌 = − ln(𝛽) = 0.1625, Δ = 0.001

1: Define a set of grid points Θ ⊂ R
2: Initialize value function 𝐽0(𝜃) for all 𝜃 ∈ Θ using 𝜎0
3: Set iteration counter: 𝑘← 0
4: repeat
5: for each 𝜃 ∈ Θ do
6: 𝜎𝑘(𝜃) ∈ arg max𝜃′∈Θ

{
𝑠
(
𝜃, 1

1−𝜆̃𝜃 −
𝜆̃

1−𝜆̃𝜃
′
)
Δ + exp(−𝜌Δ)𝐽 (𝜃′)

}
7: end for
8: 𝐽𝑘+1 ← 𝑇𝑚𝜎𝑘 𝐽𝑘,
9: if ‖𝐽𝑘+1 − 𝐽𝑘‖ ⩽ 𝜏 then

10: break
11: end if
12: 𝑘← 𝑘 + 1
13: until 𝑘 ⩾ 𝑁
14: return 𝜎𝑘, 𝐽𝑘

7.2 Subproblem 2

The value of the Ramsey problem is

𝑉𝑅 = max
𝜃0

𝐽 (𝜃0).

Evidently, 𝑉𝑅 is the maximum value of 𝑣0 defined in equation (14). Figure 7 shows the
value function 𝐽 (𝜃) computed using the OPI algorithm, and 𝜃𝑅0 = arg max𝜃0 𝐽 (𝜃0) is the
optimal initial promised value.

By comparing the value function 𝐽 (𝜃) at Δ = 1 and Δ = 0.001 in bottom panel of Figure 7,
we find that the two value functions have almost identical shapes characterized by the
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Figure 7: Upper Panel: Value function 𝐽 (𝜃) and optimal initial state 𝜃𝑅0 under
discrete time (Δ = 1). Middle Panel: Value function 𝐽 (𝜃) with near-continuous time
(Δ = 0.001). Bottom Panel: Comparison of Value functions 𝐽 (𝜃) with Δ = 1 and
Δ = 0.001.
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functional form of 𝑠(𝜃, 𝜇). However, the value function at Δ = 0.001 is lower than the
value function at Δ = 1 for larger 𝜃 values signaling that the two optimization problems
are fundamentally different. Note that the constrained-to-constant-money-growth-rate
Ramsey plan 𝜃𝐶𝑅 remains constant across different time increments Δ.

7.3 Comparison of OPI and gradient ascent in discrete and
near-continuous time

It is worth noting that our two approaches to computing a Ramsey plan seem vulnerable
to different sorts of computational errors. Our “lazy” gradient ascent algorithm that sim-
ply constructs an algorithm to compute the government planner’s objective as a function
of a sequence of money growth rates, then hands it over to a gradient-ascent optimizer
directly optimizes over continuous controls. By not discretizing the state space, it avoids
possible numerical discretization error and computational costs associated with wanting
to make a fine-grained grid on the space of admissible states and controls. In contrast,
the DP-based OPI solver explicitly relies on discretization of both states and controls
to compute value functions and policies, leading to discretization errors and increased
computational difficulty as Δ → 0. Nevertheless, Figure 8 and 9 shows a comparison
of Ramsey plan ®𝜇 computed using the OPI algorithm and the gradient ascent algorithm
in discrete and near-continuous time. Evidently, the two methods produce virtually the
same approximation to the Ramsey plan ®𝜇.

8 Concluding remarks

The state variable 𝜃𝑡 plays multiple roles in our section 7 closed-loop recursive represen-
tation of the Ramsey plan: it is an inflation rate that the monetary authority yesterday
promised to deliver today, the forecast of this period’s inflation rate that the repre-
sentative household made yesterday, and the actual rate of inflation. That the same
variable plays these multiple roles is a manifestation of the principle that in a rational
expectations model, a representative private agent’s rule for forecasting the government’s
decision equals the government’s rule rule for making those decisions. The two roles
played by that decision rule is yet another symptom of the communism of beliefs that
pervades rational expectations models. In a settings that expands the state space to
include histories of government decisions, Chang (1998) studies equilibria in which a
government always chooses to confirm the representative household’s forecast of its deci-
sions.6 Chang’s analysis makes vivid contact with a discussion by Blinder (1999, lecture

6Sargent (2024) presents a simplified version of Chang’s model.
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Figure 8: Comparison of Ramsey plan ®𝜇 under discrete time (Δ = 1)

Figure 9: Comparison of Ramsey plan ®𝜇 under near-continuous time (Δ = 0.001)
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3, part 3) that wrestles with whether the central bank should “follow the market” by
always confirming the market’s expectations of its actions. In Chang’s model, the central
bank always wants to do that.
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