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Abstract

A computer program to calculate a pair ( ®𝜃, ®𝜇) of infinite sequences of money
creation and price level inflation rates that maximizes a benevolent time 0 govern-
ment’s objective function for a model of Calvo (1978). The program computes an
associated monotonically declining, bounded from below, sequence of continuation
values whose limit is a worst continuation value that is associated with a “timeless
perspective”. The time-invariant inflation rate associated with the worst continu-
ation Ramsey plan is not the inflation rate associated with a restricted Ramsey
plan in which a time 0 government is constrained to choose a time-invariant money
creation rate.

Key words: Artificial intelligence, machine learning, fake data, Ramsey plan, time
inconsistency, open loop, closed loop, inflation, money supply, “fake data”.
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1 Introduction

Many applications of machine learning deploy an algorithm to compute a nonlinear func-
tion 𝑓 : 𝑋 → 𝑌 that satisfies context-specific auxiliary conditions. Popular contexts
include:

(a) {𝑥𝑖, 𝑦𝑖}𝐼𝑖=1 ∈ 𝑋 𝐼 >𝑌 𝐼 is a data set and 𝑓 is a non-linear least squares regression
function.

(b) 𝑓 maximizes some functional or solves some functional equation.

This paper provides an instance of the second context, a classic optimum problem that
seeks a time series of money growth rates {𝜇𝑡}∞𝑡=0 that maximizes a government’s objective
function at time 0. The optimizer takes the form of a function 𝑓 that maps times 𝑡 ∈ 𝑋 =

{0, 1, 2, . . .} into R. Let:

• 𝑝𝑡 be the log of the price level,

• 𝑚𝑡 be the log of nominal money balances,

• 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1,

• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances.

The government’s problem is cast in terms of these components:

• ®𝜇 = {𝜇𝑡}∞𝑡=0 is a time series of money growth rates,

• 𝜇𝑡 = {𝜇𝑡+𝑠}∞𝑠=0 is a time 𝑡 future or tail of a sequence of money growth rates,

• ®𝜃 = {𝜃𝑡}∞𝑡=0 is a sequence of inflation rates in the price level,

• a function 𝑔 that maps the future 𝜇𝑡 of ®𝜇 at 𝑡 into the inflation rate at 𝑡, so that
𝜃𝑡 = 𝑔(𝜇𝑡),

• a social welfare criterion
𝑣0 =

∞∑
𝑡=0

𝛽𝑡𝑟(𝜇𝑡) (1)

where 𝑟(𝜇𝑡) = �̃�(𝑔(𝜇𝑡), 𝜇𝑡), 𝑔, and �̃�(·, ·) are known functions and 𝛽 ∈ (0, 1).

The function 𝑔 describes the behavior of private agents and markets that determine the
inflation rate 𝜋𝑡 at 𝑡 as a function of the future 𝜇𝑡 of money growth rates from time 𝑡

forward. The government knows the functions 𝑔 and 𝑟 and wants an open loop plan
𝜇𝑡 = 𝑓 (𝑡), i.e., a function of time that describe a sequence of money growth rates that
maximizes welfare criterion 𝑣0 defined in (1). The classic paper by Calvo (1978) is our
source of the functions �̃� and 𝑔.
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The presence of the function 𝑔 in the government’s objective function tells it to take
into account effects that 𝜇𝑠 for all 𝑠 ⩾ 0 have on 𝜃0 when it chooses a time series ®𝜇.
A government that at time 1 instead sought to choose a sequence ®𝜇 to maximize the
alternative welfare criterion

𝑣1 =
∞∑
𝑡=1

𝛽𝑡−1𝑟(𝜇𝑡) (2)

would not care about 𝜇0 or 𝜃0 and consequently would choose a different ®𝜇 time series
than the maximizer of criterion (1), so the plan that optimizes criterion (1) is time
inconsistent.

We deploy two machine learning approaches. The first is quite lazy: it writes an algorithm
that computes the government planner’s objective as a function of a money growth rate
sequence and hands it over to a gradient ascent optimizer. The appendix describes
a less lazy approach that expresses the planner’s objective as an affine quadratic form
in ®𝜇, computes first-order conditions for an optimum, arranges them into a system of
simultaneous linear equations for ®𝜇 and then ®𝜃, and solves them. The second approach
uses less computer time to calculate the Ramsey plan.

2 The Model

Calvo’s model focuses on intertemporal tradeoffs between:

• utility accruing from a representative agent’s anticipations of future deflation that
lower the agent’s cost of holding real money balances and thereby induces the agent
to increase his stock of real money balances, and

• social costs associated with the distorting taxes that a government levies to acquire
the paper money that it withdraws from circulation in order to generate prospective
deflation.

The model features:

• rational expectations,

• costly government actions at all dates 𝑡 ⩾ 1 that increase the representative agent’s
utilities at dates before 𝑡.

The model combines a demand function for real balances formulated by Cagan (1956) with
the perfect foresight or rational expectations assumed by Sargent and Wallace (1973) and
Calvo (1978).1

1Work of Olivera (1970, 1971) about “passive money” influenced Sargent and Wallace (1973).
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2.1 Components

There is no uncertainty. A representative agent’s demand for real balances is governed
by a perfect foresight version of a Cagan (1956) demand function:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡), 𝛼 > 0 (3)

for all 𝑡 ⩾ 0.

Equation (3) asserts that the demand for real balances is inversely related to the repre-
sentative agent’s expected rate of inflation. Because there is no uncertainty, the expected
rate of inflation equals the actual rate of inflation.2

Subtracting equation (3) at time 𝑡 from the same equation at time 𝑡 + 1 gives:

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡

or
𝜃𝑡 =

𝛼

1 + 𝛼𝜃𝑡+1 +
1

1 + 𝛼𝜇𝑡 . (4)

Because 𝛼 > 0, 0 < 𝛼
1+𝛼 < 1, so difference equation (4) in the 𝜃 sequence with sequence ®𝜇

as the “forcing sequence” is stable when “solved forward.”

Definition 2.1. For scalar 𝑏𝑡, let 𝐿2 be the space of sequences {𝑏𝑡}∞𝑡=0 that satisfy

∞∑
𝑡=0

𝑏2
𝑡 < +∞.

We say that a sequence that belongs to 𝐿2 is square summable.

When we assume that ®𝜇 = {𝜇𝑡}∞𝑡=0 is square summable and also require that ®𝜃 = {𝜃𝑡}∞𝑡=0
is square summable, the linear difference equation (4) can be solved forward to get:

𝜃𝑡 =
1

1 + 𝛼

∞∑
𝑗=0

( 𝛼

1 + 𝛼
) 𝑗

𝜇𝑡+ 𝑗, 𝑡 ⩾ 0. (5)

The government values a representative household’s utility of real balances at time 𝑡

according to the utility function:

𝑈 (𝑚𝑡 − 𝑝𝑡) = 𝑢0 + 𝑢1(𝑚𝑡 − 𝑝𝑡) −
𝑢2
2
(𝑚𝑡 − 𝑝𝑡)2, 𝑢0 > 0, 𝑢1 > 0, 𝑢2 > 0. (6)

2When there is no uncertainty, an assumption of rational expectations becomes equivalent to
perfect foresight.
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The money demand function (3) and the utility function (6) imply that3:

𝑈 (−𝛼𝜃𝑡) = 𝑢0 + 𝑢1(−𝛼𝜃𝑡) −
𝑢2
2
(−𝛼𝜃𝑡)2. (7)

Via equation (5), a government plan ®𝜇 = {𝜇𝑡}∞𝑡=0 implies a sequence of inflation rates
®𝜃 = {𝜃𝑡}∞𝑡=0.

The government incurs social costs 𝑐
2𝜇

2
𝑡 when it changes the stock of nominal money

balances at rate 𝜇𝑡 at time 𝑡. Therefore, the one-period welfare function of a benevolent
government is:

𝑠(𝜃𝑡, 𝜇𝑡) = 𝑈 (−𝛼𝜃𝑡) −
𝑐

2
𝜇2
𝑡 .

The government chooses everything it can at time 𝑡 = 0 and wants to maximize

𝑉 =
∞∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡), (8)

where 𝛽 ∈ (0, 1) is a discount factor.

The Ramsey planner chooses a vector of money growth rates ®𝜇 to maximize criterion (8)
subject to equation (5) and the restriction:

®𝜃 ∈ 𝐿2. (9)

Equations (5) and (9) imply that ®𝜃 is a function of ®𝜇. In particular, the inflation rate 𝜃𝑡

satisfies:
𝜃𝑡 = (1 − 𝜆)

∞∑
𝑗=0

𝜆 𝑗𝜇𝑡+ 𝑗, 𝑡 ⩾ 0, (10)

where
𝜆 =

𝛼

1 + 𝛼.

2.2 Basic Objects

Let’s remind ourselves of the mathematical objects in play.

We have a pair of sequences of inflation rates and money rates

( ®𝜃, ®𝜇) = {𝜃𝑡, 𝜇𝑡}∞𝑡=0,

3A “bliss level” of real balances is 𝑢1
𝑢2

; the inflation rate that attains it is − 𝑢1
𝑢2𝛼

.
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and a planner’s value function:

𝑉 =
∞∑
𝑡=0

𝛽𝑡
(
ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃

2
𝑡 −

𝑐

2
𝜇2
𝑡

)
, (11)

where we set ℎ0, ℎ1, ℎ2 to match:

𝑢0 + 𝑢1(−𝛼𝜃𝑡) −
𝑢2
2
(−𝛼𝜃𝑡)2

with
ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃

2
𝑡 .

To make our parameters match as desired, we set:

ℎ0 = 𝑢0,

ℎ1 = −𝛼𝑢1,

ℎ2 = −𝑢2𝛼2

2
.

(12)

Definition 2.2. A Ramsey planner chooses ®𝜇 to maximize the government’s value func-
tion (11) subject to equation (10). A ®𝜇 that solves this problem is called a Ramsey
plan.

2.3 Timing Protocol

Calvo (1978) asks the government to choose the money growth sequence ®𝜇 once and for
all, at or before time 0. By choosing the money growth sequence ®𝜇, the government indi-
rectly chooses the inflation sequence ®𝜃. So the government effectively chooses a bivariate
time series ( ®𝜇, ®𝜃). The government’s problem is static in the sense that it chooses all
components of a bivariate time series ( ®𝜇, ®𝜃) at time 0.

2.4 Approximation and Truncation Parameter 𝑇

It turns out that the sequences {𝜃𝑡} and {𝜇𝑡} both converge to stationary values under a
Ramsey plan. Consequently, we impose the guess that

lim
𝑡→+∞

𝜇𝑡 = 𝜇.

Convergence of 𝜇𝑡 to 𝜇 together with formula (10) for the inflation rate then implies that:

lim
𝑡→+∞

𝜃𝑡 = 𝜃.
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We’ll guess a time 𝑇 large enough that 𝜇𝑡 has gotten very close to the limit 𝜇. Then we’ll
approximate ®𝜇 by a truncated vector with the property:

𝜇𝑡 = 𝜇 ∀𝑡 ⩾ 𝑇.

Similarly, we’ll approximate ®𝜃 with a truncated vector with the property:

𝜃𝑡 = 𝜃 ∀𝑡 ⩾ 𝑇.

In light of our approximation that 𝜇𝑡 = 𝜇 for all 𝑡 ⩾ 𝑇, we seek a function that takes

𝜇 =
[
𝜇0 𝜇1 · · · 𝜇𝑇−1 𝜇

]
as an input and gives as an output the vector

𝜃 =
[
𝜃0 𝜃1 · · · 𝜃𝑇−1 𝜃

]
,

where 𝜃 = 𝜇 and 𝜃𝑡 satisfies:

𝜃𝑡 = (1 − 𝜆)
𝑇−1−𝑡∑
𝑗=0

𝜆 𝑗𝜇𝑡+ 𝑗 + 𝜆𝑇−𝑡𝜇, (13)

for 𝑡 = 0, 1, . . . , 𝑇 − 1.

Having defined vector 𝜇 and computed the vector 𝜃 using formula (13), we can rewrite
the government’s value function (11) as

𝑉 =
∞∑
𝑡=0

𝛽𝑡
(
ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃

2
𝑡 −

𝑐

2
𝜇2
𝑡

)
, (14)

or more precisely as

𝑉 =
𝑇−1∑
𝑡=0

𝛽𝑡
(
ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃

2
𝑡 −

𝑐

2
𝜇2
𝑡

)
+ 𝛽𝑇

1 − 𝛽

(
ℎ0 + ℎ1𝜇 + ℎ2𝜇

2 − 𝑐

2
𝜇2

)
, (15)

where 𝜃𝑡 for 𝑡 = 0, 1, . . . , 𝑇 − 1 satisfies formula (13).

3 Gradient Ascent Algorithm

We now describe an algorithm that maximizes the criterion function (11) subject to
equations (10) by choice of the truncated vector 𝜇. Based on the discussion in Section 2.4,
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we compute the gradient of the objective function (15) with respect to 𝜇. We can compute
it using the following simple algorithm.

Algorithm 1: Compute 𝑉 (𝜇) (Compute_V)
Require: Parameters 𝜇, 𝛽 = 0.85, 𝑐 = 2, 𝛼 = 1, 𝑢0 = 1, 𝑢1 = 0.5, 𝑢2 = 3, 𝑇 = 40

1: Compute 𝜃 using (13)
2: Compute coefficients ℎ0, ℎ1, ℎ2 using (12)
3: Compute 𝑉 using

𝑉 (𝜇) =
𝑇−1∑
𝑡=0

𝛽𝑡
(
ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃

2
𝑡 −

𝑐

2
𝜇2
𝑡

)
+ 𝛽𝑇

1 − 𝛽

(
ℎ0 + ℎ1𝜇 + ℎ2𝜇

2 − 𝑐

2
𝜇2

)
,

4: return 𝑉

We use a Python function Compute_V to compute a value 𝑉 associated with given a vector
𝜇.4 Our algorithm for maximizing the value function 𝑉 with respect to 𝜇 employs autodif-
ferentiation in JAX (Bradbury et al., 2018) and the Adam optimizer (AdamOptimizer) (Kingma,
2014) from optax (DeepMind et al., 2020). Autodifferentiation computes the gradient
directly from the function Compute_V. The optax and machine learning libraries typi-
cally implement gradient descent, so we reformulate our maximization problem as an
equivalent minimization of −𝑉 with respect to 𝜇 in Algorithm 2.

We initiate the gradient ascent algorithm with a money growth sequence 𝜇𝑡 = 0 for all
𝑡 ⩾ 0, then iteratively update 𝜇 until convergence. Figure 1 plots the Ramsey plan’s 𝜇𝑡

and 𝜃𝑡 for 𝑡 = 0, . . . , 𝑇 against 𝑡 computed by the algorithm. Note that while 𝜃𝑡 is less
than 𝜇𝑡 for low 𝑡’s, it eventually converges to a limit 𝜇 of 𝜇𝑡 as 𝑡 → +∞, a consequence
of how formula (5) makes 𝜃𝑡 be a weighted average of future 𝜇𝑡’s.

4 Continuation Values

It is useful to compute a sequence {𝑣𝑡}𝑇𝑡=0 of “continuation values”

𝑣𝑡 =
∞∑
𝑠=𝑡

𝛽𝑠−𝑡𝑠(𝜃𝑡+𝑠, 𝜇𝑡+𝑠)

along a Ramsey plan. To do so, we’ll start at our truncation date 𝑇 and compute

𝑣𝑇 =
1

1 − 𝛽
𝑠(𝜇, 𝜇).

4We describe and deploy a more sophisticated method to compute the value function in the appendix.
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Algorithm 2: Optimization Algorithm for Computing 𝑉

Require:
Functions: Compute_V, AdamOptimizer
Parameters: 𝜂 = 0.1 (learning rate)

𝜀 = 10−7 (convergence tolerance)
𝑁 = 10, 000 (max number of iterations)

Step 1: Initialization
1: Set initial guess 𝜇0 ← ®0
2: Compute gradient function ∇𝜇𝑉 =

[
𝜕𝑉
𝜕𝜇1

, 𝜕𝑉
𝜕𝜇2

, . . . , 𝜕𝑉
𝜕𝜇𝑇

]
using automatic differentiation

jax.grad.
Step 2: Optimization

3: Initialize AdamOptimizer with learning rate 𝜂, and exponential decay rates.
4: Set iteration counter 𝑖← 0
5: repeat
6: Compute gradients: 𝑔𝑖 ← −∇𝜇𝑉 (𝜇𝑖) # For maximization
7: Update parameters: 𝜇𝑖+1 ← AdamOptimizer(𝜇𝑖, 𝑔𝑖)
8: if ‖𝑔𝑖‖ < 𝜀 then
9: Convergence achieved: 𝜇∗ ← 𝜇𝑖

10: break
11: end if
12: 𝑖← 𝑖 + 1
13: until 𝑖 ⩾ 𝑁
14: 𝑉∗ ← Compute_V(𝜇∗)
15: return 𝜇∗, 𝑉∗

Figure 1: Ramsey plan ( ®𝜇 and ®𝜃)
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Then starting from 𝑡 = 𝑇 − 1, we’ll iterate backwards on the recursion

𝑣𝑡 = 𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1

for 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 0.

The initial continuation value 𝑣0 should equal the optimized value of the Ramsey planner’s
criterion 𝑉 defined in equation (8). We verify approximate equality by inspecting Figure 2,
which plots 𝑣𝑡 against 𝑡 for 𝑡 = 0, . . . , 𝑇 .

Before studying Figure 2 in detail, we take a brief detour. Recall that our Ramsey planner
chooses ®𝜇 to maximize the government’s value function (11) subject to equations (10). It
is useful to consider a distinct problem in which a planner again chooses ®𝜇 to maximize
the government’s value function (11), but now subject to equation (10) and the additional
restriction that 𝜇𝑡 = 𝜇 for all 𝑡. The solution of this problem is a time-invariant 𝜇𝑡 = 𝜇𝐶𝑅

for all 𝑡 ⩾ 0. Computing 𝜇𝐶𝑅 with a gradient ascent algorithm is easy.

Figure 2: Continuation values

Now turn to figure Figure 2 and observe (a) that the sequence of continuation values
{𝑣𝑡}𝑇𝑡=0 is monotonically decreasing; (b) that 𝑣0 > 𝑉𝐶𝑅 > 𝑣𝑇 so that (c) the value 𝑣0 of
the ordinary Ramsey plan exceeds the value 𝑉𝐶𝑅 of the special Ramsey plan in which
the planner is constrained to set 𝜇𝑡 = 𝜇𝐶𝑅 for all 𝑡; (d) the continuation value 𝑣𝑇 of the
ordinary Ramsey plan for 𝑡 ⩾ 𝑇 is constant and is less than the value 𝑉𝐶𝑅 of the special
Ramsey plan in which the planner is constrained to set 𝜇𝑡 = 𝜇𝐶𝑅 for all 𝑡, and (e) the
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worst continuation value 𝑣𝑇 is what some macroeconomists call the “value of a Ramsey
plan under a time-less perspective.” (We’ll have more to say about this concept soon.)

5 Applying Human Intelligence

So far, we have represented a Ramsey plan in the open loop form of a function

𝜇𝑡 = 𝑓 (𝑡) (16)

that maps 𝑡 ∈ {0, 1, 2, . . . , } to 𝜇𝑡 ∈ R.

As indicated in Figure 1, the Ramsey planner makes ®𝜇 and ®𝜃 both vary over time.

• ®𝜃 and ®𝜇 both decline monotonically.

• ®𝜃 and ®𝜇 converge from above to a common constant ®𝜇.

The open loop representation of a Ramsey plan respects the Ramsey problem’s instruc-
tion to choose a sequence ®𝜇 once-and-for-all at time 0. Nevertheless, many macroe-
conomists and control theorists prefer a closed loop representation of a Ramsey plan
that takes the form of a pair of functions

𝜇𝑡 = 𝑚(𝑧𝑡)
𝑧𝑡+1 = 𝑛(𝑧𝑡),

where 𝑧𝑡 is a state vector, the second equation is a transition equation for 𝑧𝑡+1, and 𝑧𝑅0
is a value that the Ramsey planner chooses for the initial state vector.

Such a recursive structure in the ®𝜇, ®𝜃 chosen by our machine-learning Ramsey planner lies
hidden from view. Let’s try to bring it out by again using machine learning. We’ll proceed
by viewing the Ramsey pair ®𝜇𝑅, ®𝜃𝑅 as “fake data” on which we’ll run some exploratory
least squares regressions.5 In what follows, we use ®𝜇𝑅, ®𝜃𝑅 to denote the “fake data”.

We add some human intelligence to the artificial intelligence embodied in our least
squares Python programs by formulating specifications of regressions to run on our “fake
data”. We begin by computing least squares linear regressions of some components of
®𝜃𝑅 and ®𝜇𝑅 on other components and hoping that these regressions will reveal structure
hidden within the ®𝜇𝑅, ®𝜃𝑅 sequences associated with a Ramsey plan.

It is worth pausing to think about roles being played here by human and artificial
intelligence. Artificial intelligence in the form of a computer program runs the regressions.

5Thus, our “fake data” set is just the Ramsey plan generated by our open loop formula for 𝜇𝑡 as a
function of 𝑡 and formula (5) that takes the future 𝜇𝑡 and maps it into 𝜃𝑡.
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But one is always free to regress anything on anything else. Human intelligence, such as
it is, must tell us which regressions to run.

Additional inputs of human intelligence will be required fully to appreciate what those
regressions reveal about the structure of a Ramsey plan.

Our machine-learned Ramsey plan ®𝜇𝑅, ®𝜃𝑅 constitutes the “fake” data set that we use to
run regressions in Table 1 and Table 2. Table 1 reports several regressions with 𝜇𝑡 on
the right sides. Table 2 reports several regressions with 𝜃𝑡 on the right sides. We begin
by focusing on the first entry in Table 1 that reports outcomes from regressing 𝜃𝑡 on a
constant and 𝜇𝑡. This seems natural because equation (5) asserts that inflation at time 𝑡

is determined by the money growth sequence {𝜇𝑠}∞𝑠=𝑡. After all, since a Ramsey planner
chooses a money growth sequence, shouldn’t money growth be the “exogenous variable”
in our regressions? We’ll return to this question soon.

The first entry of Table 1 reports the least squares affine regression 𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝜀𝑡,
where 𝜀𝑡 is a least squares residual that is by construction orthogonal to 𝜇𝑡.

Table 1: Regression results with 𝜇𝑡 as independent variable

Model Variable Coefficient Std. Error t-statistic

𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡 + 𝜀𝑡
Constant (𝑏0) -0.0403 1.59 × 10−8 −2.53 × 106

𝜇𝑡 (𝑏1) 0.6252 1.5 × 10−7 4.16 × 106

𝑅2 = 1.000

𝜇𝑡+1 = 𝑑0 + 𝑑1𝜇𝑡 + 𝜀𝑡
Constant (𝑑0) -0.0645 3.61 × 10−8 −1.79 × 106

𝜇𝑡 (𝑑1) 0.4005 3.4 × 10−7 1.18 × 106

𝑅2 = 1.000

𝑣𝑡 = �̃�0 + �̃�1𝜇𝑡 + 𝜀𝑡
Constant (�̃�0) 6.8417 0.000 2.09 × 104

𝜇𝑡 (�̃�1) 0.0864 0.003 27.927
𝑅2 = 0.954

𝑣𝑡 = �̃�0 + �̃�1𝜇𝑡 + �̃�2𝜇2
𝑡 + 𝜀𝑡

Constant (�̃�0) 6.8281 1.92 × 10−6 3.55 × 106

𝜇𝑡 (�̃�1) -0.2370 4.55 × 10−5 -5213.119
𝜇2
𝑡 (�̃�2) -1.8369 0.000 -7125.667

𝑅2 = 1.000

Notice that the 𝑅2 statistic is 1, so the error term is nearly zero and we have discovered
that

𝜃𝑡 = −.0403 + .6252𝜇𝑡

We plot the regression line in the left panel of Figure 3. The dots indicate 𝜇𝑡, 𝜃𝑡 pairs for
𝑡 = 0, 1, 2, . . . that converge from above to a limiting pair 𝜇, 𝜃.

In hopes of discovering a law of motion of ®𝜇 under the Ramsey plan, the second entry
of Table 1 reports the least squares affine regression 𝜇𝑡+1 = 𝑑0 + 𝑑1𝜇𝑡 + 𝜀𝑡, where, recycling
notation, 𝜀𝑡 is now a least squares residual that is by construction orthogonal to 𝜇𝑡.
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Figure 3: Regression of 𝜃𝑡 on a constant and 𝜇𝑡 (left), regression of 𝜇𝑡+1 on a constant
and 𝜇𝑡 (center), and regression of 𝑣𝑡 on a constant, 𝜇𝑡, and 𝜇2

𝑡 . The orange line denotes
the value of 𝑉𝐶𝑅 (right).

We again got a perfect fit and have now discovered the following Ramsey planner’s law
of motion for ®𝜇𝑅:

𝜇𝑡+1 = −.0645 + .4005𝜇𝑡

We plot the regression line in the middle panel of Figure 3. Here the dots indicate 𝜇𝑡, 𝜇𝑡+1
pairs for 𝑡 = 0, 1, 2, . . . that converge from above to a limiting pair 𝜇, 𝜇.

The third entry of Table 1 reports the least squares affine regression 𝑣𝑡 = �̃�0 + �̃�1𝜇𝑡 + 𝜀𝑡,
where, again recycling notation, 𝜀𝑡 is now a least squares residual that is by construction
orthogonal to 𝜇𝑡. The 𝑅2 indicates the affine regression line explains only 95.4% of the
variation in 𝑣𝑡. Since the 𝑅2 is less than 1, the non-zero least squares residual 𝜀𝑡 that
is orthogonal to 𝜇𝑡 remains in the equation. We find this displeasing because neither
the government nor the representative agent faces any uncertainty and 𝜇𝑡 seems to be
the only thing that can affect 𝑣𝑡. In hopes of reducing the error terms, the fourth entry
of Table 1 reports a least squares regression of 𝑣𝑡 on a constant, 𝜇𝑡, and 𝜇2

𝑡 . Now the 𝑅2

is 1, so 𝜀𝑡 disappears and we have succeeded in unearthing the following representation
the time 𝑡 continuation valuation 𝑣𝑡 as a function of the time 𝑡 money growth rate 𝜇𝑡:

𝑣𝑡 = 6.8281 − .2370𝜇𝑡 − 1.8369𝜇2
𝑡 ,

with regression line plotted in the right panel of Figure 3.

Assembling our regressions, we have discovered that along a single Ramsey outcome path
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®𝜇𝑅, ®𝜃𝑅 the following relationships prevail:

𝜇0 = 𝜇𝑅
0

𝜃𝑡 = 𝑏0 + 𝑏1𝜇𝑡

𝜇𝑡+1 = 𝑑0 + 𝑑1𝜇𝑡,

(17)

where 𝑏0, 𝑏1, 𝑑0, 𝑑1 are parameters whose values we estimated with our regressions; we
unearthed initial value 𝜇𝑅

0 along with other components of ®𝜇𝑅, ®𝜃𝑅 when we computed the
Ramsey plan.

In addition, we learned that along our Ramsey plan, continuation values are described
by the quadratic function

𝑣𝑡 = �̃�0 + �̃�1𝜇𝑡 + �̃�2𝜇
2
𝑡 .

5.1 Direction of fit?

Instead of taking 𝜇𝑡 as the “independent” (i.e., right hand side) variable, let’s temporarily
put 𝜃𝑡 on the right hand side. A plausible case for putting 𝜃𝑡 and not 𝜇𝑡 on the right hand
side could be that the Ramsey planner is “inflation targeting”, just as many governments
today tell there central banks to do. The three entries of Table 2 report results.

Table 2: Regression results with 𝜃𝑡 as independent variable

Model Variable Coefficient Std. Error t-statistic

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡 + 𝜀𝑡
Constant (𝑏0) 0.0645 4.42 × 10−8 1.46 × 106

𝜃𝑡 (𝑏1) 1.5995 4.14 × 10−7 3.86 × 106

𝑅2 = 1.000

𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡 + 𝜀𝑡
Constant (𝑑0) -0.0645 4.84 × 10−8 −1.33 × 106

𝜃𝑡 (𝑑1) 0.4005 4.54 × 10−7 8.82 × 105

𝑅2 = 1.000

𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃2
𝑡 + 𝜀𝑡

Constant (𝑔0) 6.8052 5.91 × 10−6 1.15 × 106

𝜃𝑡 (𝑔1) -0.7581 0.000 -6028.976
𝜃2
𝑡 (𝑔2) -4.6996 0.001 -7131.888

𝑅2 = 1.000

Taking stock, our regression with 𝜃𝑡 on the right side tells us that along the Ramsey
outcome ®𝜇𝑅, ®𝜃𝑅, the affine function

𝜇𝑡 = .0645 + 1.5995𝜃𝑡
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Figure 4: Regression of 𝜇𝑡 on a constant and 𝜃𝑡 (left), regression of 𝜃𝑡+1 on a constant
and 𝜃𝑡 (center), and regression of 𝑣𝑡 on a constant and 𝜃𝑡 and 𝜃2

𝑡 . The orange line depicts
𝑉𝐶𝑅 (right).

fits perfectly and so do the regression lines

𝜃𝑡+1 = −.0645 + .4005𝜃𝑡

𝑣𝑡 = 6.8052 − .7580𝜃𝑡 − 4.6991𝜃2
𝑡 .

Thus, we have discovered that along a single Ramsey outcome path ®𝜇𝑅, ®𝜃𝑅 the following
relationships prevail:

𝜃0 = 𝜃𝑅
0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡

𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡

(18)

where 𝑏0, 𝑏1, 𝑑0, 𝑑1 are parameters whose values we estimated with our regressions; we
unearthed initial value 𝜃𝑅

0 along with other components of ®𝜇𝑅, ®𝜃𝑅 when we computed the
Ramsey plan.

In addition, we learned that along our Ramsey plan, continuation values are described
by the quadratic function

𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃
2
𝑡

As with our earlier regressions with 𝜇𝑡 on the right side, we discovered these relationships
by running some regressions, staring at the results, and noticing that 𝑅2’s of unity tell us
that the fits are perfect.

The right panel of Figure 4 indicates that the highest continuation value 𝑣0 at 𝑡 = 0
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appears at the peak of the quadratic function 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃2
𝑡 . Subsequent values of 𝑣𝑡 for

𝑡 ⩾ 1 appear to the lower left of the pair (𝜃0, 𝑣0) and converge monotonically from above
to 𝑣𝑇 at time 𝑇.

The value 𝑉𝐶𝑅 attained by the Ramsey plan that is restricted to be a constant 𝜇𝑡 = 𝜇𝐶𝑅

sequence appears as a horizontal line. Evidently, continuation values 𝑣𝑡 > 𝑉𝐶𝑅 for 𝑡 = 0, 1, 2
while 𝑣𝑡 < 𝑉𝐶𝑅 for 𝑡 ⩾ 3.

It is reasonable to suppose that qualitatively similar relationships would hold along the
Ramsey plans that our machine learning algorithms would find for other sets of parameter
values 𝛽, 𝛼, 𝑐, 𝑢0, 𝑢1, 𝑢2, but that the parameters of the regression functions would change.
These least squares regression coefficients are themselves complicated non-linear functions
of the parameters 𝛽, 𝛼, 𝑐, 𝑢0, 𝑢1, 𝑢2 that shape the government’s criterion function; but we
could still expect to find that R2 = 1 for the corresponding regressions.

6 What machine learning taught us

We have discovered that the Ramsey plan for ®𝜇 seems to have a recursive structure. But
by using the methods and ideas that we have deployed here, it is challenging to say more.
We have discovered two closed-loop representations of a Ramsey plan and the associated
continuation value sequence, one with 𝜇𝑡 as the right-hand side “independent variable”,
the other with 𝜃𝑡 as the right-hand side variable. Both are valid representations. Which
representation is better in terms of understanding forces shaping the plan? To answer
that question, we would have to deploy more economic theory in order to discover that
(18) is actually a better way to represent a Ramsey plan, as Chang (1998) showed.

We close this paper by providing a preview of an insight of Chang (1998) who noticed
that equation (5) indicates that an equivalence class of continuation money growth se-
quences {𝜇𝑡+ 𝑗}∞𝑗=0 deliver the same 𝜃𝑡. Consequently, equations (3) and (5) describe how
𝜃𝑡 intermediates how the government’s choices of 𝜇𝑡+ 𝑗, 𝑗 = 0, 1, . . . impinge on time 𝑡 real
balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡 and thereby on time 𝑡 welfare.

We can appreciate Chang’s reasoning by thinking about the following “machine learning”
procedure for computing continuation values from time 0 that start from an arbitrary
initial inflation rate 𝜃0. For each 𝜃0 ∈ R, define a set

Ω(𝜃0) = {𝜃𝑡+1, 𝜇𝑡}∞𝑡=0 : 𝜃𝑡+1 = 𝜆−1𝜃𝑡 + (1 − 𝜆−1)𝜇𝑡 ∀𝑡 ⩾ 0, ®𝜃 ∈ 𝐿2

For a given 𝜃0, use machine learning to compute a closed loop policy

𝜃𝑡 = 𝑓 (𝑡; 𝜃0), 𝑡 ⩾ 1
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that solves the maximization problem on the right side of the following equation for a
continuation value function 𝐽 (𝜃0):

𝐽 (𝜃0) = max
{𝜃𝑡+1,𝜇𝑡}∞𝑡=0∈Ω(𝜃0)

∞∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡).

If we were to do this for a set of different possible 𝜃0’s and then study how 𝐽 (𝜃0) varies
with 𝜃0, we would discover that

𝐽 (𝜃0) = 𝑔0 + 𝑔1𝜃0 + 𝑔2𝜃
2
0,

where the right side is the same quadratic value function that we constructed earlier. We
could then hand the function 𝐽 (𝜃0) over to our Ramsey planner and compute the Ramsey
planner’s choice of 𝜃0 according to

𝜃0 = 𝜃𝑅
0 = arg max 𝐽 (𝜃) = − 𝑔1

2𝑔2
.

Finally, we could compute the value of the Ramsey plan as

𝑣𝑅0 = max
𝜃

𝐽 (𝜃).

We have come to the threshold of the formulation of the analysis of Chang (1998). He
noticed that a continuation Ramsey planner’s value function satisfies the Bellman equa-
tion

𝐽 (𝜃) = max
𝜇,𝜃′
{𝑠(𝜃, 𝜇) + 𝛽𝐽 (𝜃′)}, (19)

where maximization is subject to

𝜃′ = 𝜆−1𝜃 + (1 − 𝜆−1)𝜇.

In a sequel to this paper, we shall describe Chang’s use of dynamic programming
squared in which state variable 𝜃 that appears in Bellman equation (19) satisfies (5).
We can regard this equation as another Bellman equation, one that expresses a ‘value’ 𝜃𝑡
as a function of next period’s ‘value’ 𝜃𝑡+1. The argument 𝜃 in Bellman equation (19) is
thus a value governed by another Bellman equation, leading us to call this an instance of
a dynamic programming squared problem. 6

We’ll discuss these interpretations of Chang’s state variable in the sequel.

6In Chang’s model, 𝜃𝑡 simultaneously plays multiple roles as inflation target, actual inflation, promised
inflation, and expected inflation.
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A A Faster Machine Learning Algorithm

By thinking about the mathematical structure of the Ramsey problem and using some
linear algebra, we can simplify the problem that we hand over to a machine learning
algorithm.

We start by recalling that the Ramsey problem that chooses ®𝜇 to maximize the govern-
ment’s value function (11) subject to equation (10).

This turns out to be an optimization problem with a quadratic objective function and
linear constraints. First-order conditions for this problem are a set of simultaneous linear
equations in ®𝜇. If we trust that the second-order conditions for a maximum are also
satisfied (they are in our problem), we can compute the Ramsey plan by solving these
equations for ®𝜇.

To remind us of the setting, remember that we have assumed that

𝜇𝑡 = 𝜇𝑇 ∀𝑡 ⩾ 𝑇

and that
𝜃𝑡 = 𝜃𝑇 = 𝜇𝑇 ∀𝑡 ⩾ 𝑇

Again, define

®𝜃 =



𝜃0

𝜃1
...

𝜃𝑇−1

𝜃𝑇


, ®𝜇 =



𝜇0

𝜇1
...

𝜇𝑇−1

𝜇𝑇


Write the system of 𝑇 +1 equations (13) that relate ®𝜃 to a choice of ®𝜇 as the single matrix
equation

1
(1 − 𝜆)



1 −𝜆 0 0 · · · 0 0
0 1 −𝜆 0 · · · 0 0
0 0 1 −𝜆 · · · 0 0
...

...
...

...
... −𝜆 0

0 0 0 0 · · · 1 −𝜆
0 0 0 0 · · · 0 1 − 𝜆





𝜃0

𝜃1

𝜃2
...

𝜃𝑇−1

𝜃𝑇


=



𝜇0

𝜇1

𝜇2
...

𝜇𝑇−1

𝜇𝑇


or

𝐴®𝜃 = ®𝜇.

Let 𝐵 := 𝐴−1, and we can write
®𝜃 = 𝐵®𝜇
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As before, the Ramsey planner’s criterion is

𝑉 =
∞∑
𝑡=0

𝛽𝑡 (ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃
2
𝑡 −

𝑐

2
𝜇2
𝑡 )

With our assumption above, criterion 𝑉 can be rewritten as

𝑉 =
𝑇−1∑
𝑡=0

𝛽𝑡 (ℎ0 + ℎ1𝜃𝑡 + ℎ2𝜃
2
𝑡 −

𝑐

2
𝜇2
𝑡 )

+ 𝛽𝑇

1 − 𝛽
(ℎ0 + ℎ1𝜃𝑇 + ℎ2𝜃

2
𝑇 −

𝑐

2
𝜇2
𝑇 )

To help us write 𝑉 as a quadratic plus affine form, define

®𝛽 =



1
𝛽
...

𝛽𝑇−1

𝛽𝑇

1−𝛽


Then we have:

ℎ1

∞∑
𝑡=0

𝛽𝑡𝜃𝑡 = ℎ1 · ®𝛽𝑇 ®𝜃 = (ℎ1 · 𝐵𝑇 ®𝛽)𝑇 ®𝜇 = 𝑔𝑇 ®𝜇

where 𝑔 = ℎ1 · 𝐵𝑇 ®𝛽 is a (𝑇 + 1) × 1 vector,

ℎ2

∞∑
𝑡=0

𝛽𝑡𝜃2
𝑡 = ®𝜇𝑇 (𝐵𝑇 (ℎ2 · ®𝛽 · I)𝐵) ®𝜇 = ®𝜇𝑇𝑀 ®𝜇

where 𝑀 = 𝐵𝑇 (ℎ2 · ®𝛽 · I)𝐵 is a (𝑇 + 1) × (𝑇 + 1) matrix,

𝑐

2

∞∑
𝑡=0

𝛽𝑡𝜇2
𝑡 = ®𝜇𝑇 ( 𝑐

2
· ®𝛽 · I) ®𝜇 = ®𝜇𝑇𝐹 ®𝜇

where 𝐹 = 𝑐
2 · ®𝛽 · I is a (𝑇 + 1) × (𝑇 + 1) matrix

It follows that
𝐽 = 𝑉 − ℎ0 =

∞∑
𝑡=0

𝛽𝑡 (ℎ1𝜃𝑡 + ℎ2𝜃
2
𝑡 −

𝑐

2
𝜇2
𝑡 )

= 𝑔𝑇 ®𝜇 + ®𝜇𝑇𝑀 ®𝜇 − ®𝜇𝑇𝐹 ®𝜇
= 𝑔𝑇 ®𝜇 + ®𝜇𝑇 (𝑀 − 𝐹) ®𝜇
= 𝑔𝑇 ®𝜇 + ®𝜇𝑇𝐺 ®𝜇
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where 𝐺 = 𝑀 − 𝐹.

To compute the optimal government plan we want to maximize 𝐽 with respect to ®𝜇.

We use linear algebra formulas for differentiating linear and quadratic forms to compute
the gradient of 𝐽 with respect to ®𝜇

∇®𝜇 𝐽 = 𝑔 + 2𝐺 ®𝜇.

Setting ∇®𝜇 𝐽 = 0, the maximizing 𝜇 is

®𝜇𝑅 = −1
2
𝐺−1𝑔

The associated optimal inflation sequence is

®𝜃𝑅 = 𝐵®𝜇𝑅

To implement this, we can update our gradient ascent exercise in Algorithm 2 with 𝐽 and
its gradient. This allows us to vectorize the operations. We find that by exploiting more
knowledge about the structure of the problem, we can accelerate computation. 7

7For the detailed camparison in the computation time, please see the companion QuantEcon lecture

https://python-advanced.quantecon.org/calvo_machine_learn.html#two-implementations
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