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Abstract

Bellman equations for a continuation Ramsey plan and an inflation target de-
termine a pair of infinite sequences of money creation and price level inflation rates
that maximizes a benevolent time 0 government’s objective function for a model of
Calvo (1978). Dynamic programming provides a recursive representation of the op-
timal plan in which a promised inflation rate is the state variable that summarizes
a continuation of a money growth sequence.
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1 Introduction

Sargent and Yang (2024) applied a brute force machine learning algorithm to compute
an optimal government plan for a linear-quadratic version of a model of Calvo (1978).
This paper instead uses ideas of Chang (1998) to formulate an optimal plan in terms
of a pair of Bellman equations in the government’s continuation value and a promised
inflation rate. The associated dynamic program teaches us more about the structure of an
optimal plan than we gathered from machine learning.1 The promised inflation rate also
equals an actual inflation rate, an inflation target, and a representative agent’s expected
inflation rate. We also explore how alternative timing protocols for government decision
making affect outcomes.2

Calvo’s model focuses on intertemporal tradeoffs between (a) benefits that anticipations of
future deflation generate by decreasing costs of holding real money balances and thereby
increasing a representative agent’s liquidity, as measured by real money balances, and
(b) costs associated with distorting taxes that a government levies to acquire the paper
money that it destroys in order to generate anticipated deflation.

2 The Model

There is no uncertainty. 𝑝𝑡 is the log of the price level at time 𝑡, 𝑚𝑡 be the log of
nominal money balances, 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 is the net rate of inflation between 𝑡 and 𝑡 + 1,
and 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 is the net rate of growth of nominal balances. The demand for real
balances is governed by a discrete time version of Sargent and Wallace (1973)’s perfect
foresight version of a Cagan (1956) demand function for real balances:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) , 𝛼 > 0 (1)

for 𝑡 ⩾ 0.

Equation (1) asserts that the demand for real balances is inversely related to the public’s
expected rate of inflation, which equals the actual rate of inflation because there is no
uncertainty here.

Subtracting the demand function (1) at time 𝑡 from the time 𝑡 + 1 version of this demand
function gives

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡,
1In addition to ideas of Chang (1998), we will deploy the linear-quadratic dynamic programming

described in chapters 5 and 19 of Ljungqvist and Sargent (2018).
2Sargent (2024) used the same laboratory to describe consequences of Lucas (1976).
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or equivalently,
𝜃𝑡 =

𝛼

1 + 𝛼𝜃𝑡+1 +
1

1 + 𝛼𝜇𝑡 . (2)

Because 𝛼 > 0, it follows that 0 < 𝛼
1+𝛼 < 1.

Definition 2.1. For scalar 𝑏𝑡, let 𝐿2 be the space of sequences {𝑏𝑡}∞𝑡=0 satisfying

∞∑
𝑡=0

𝑏2
𝑡 < +∞.

We say that a sequence that belongs to 𝐿2 is square summable.

When we assume that the sequence ®𝜇 = {𝜇𝑡}∞𝑡=0 is square summable and we require that
the sequence ®𝜃 = {𝜃𝑡}∞𝑡=0 is square summable, the linear difference equation (2) can be
solved forward to get:

𝜃𝑡 =
1

1 + 𝛼

∞∑
𝑗=0

( 𝛼

1 + 𝛼
) 𝑗
𝜇𝑡+ 𝑗. (3)

Chang (1998) noted that equations (1) and (3) show that 𝜃𝑡 intermediates how choices
of 𝜇𝑡+ 𝑗, 𝑗 = 0, 1, . . . impinge on time 𝑡 real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡. An equivalence class
of continuation money growth sequences {𝜇𝑡+ 𝑗}∞𝑗=0 deliver the same 𝜃𝑡.

We shall use this insight to simplify our analysis of alternative government policy prob-
lems. That future rates of money creation influence earlier rates of inflation makes timing
protocols matter for modeling optimal government policies.

We can represent restriction (3) as


1

𝜃𝑡+1

 =

1 0

0 1+𝛼
𝛼



1

𝜃𝑡

 +


0

− 1
𝛼

 𝜇𝑡,
or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡, (4)

where

𝑥𝑡 =


1

𝜃𝑡

 , 𝐴 =


1 0

0 1+𝛼
𝛼

 , 𝐵 =


0

− 1
𝛼

 .
Even though 𝜃0 is determined by our model and so is not an initial condition, as it
ordinarily would be in the state-space model, we nevertheless write the model in the
state-space form (4).

Notice that 1+𝛼
𝛼 > 1 is an eigenvalue of transition matrix 𝐴 that threatens to destabilize
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the state-space system. Indeed, for arbitrary, ®𝜇 = {𝜇𝑡}∞𝑡=0 sequences, ®𝜃 = {𝜃𝑡}∞𝑡=0 will not
necessarily be square summable. But the government planner will design a decision rule
for 𝜇𝑡 that stabilizes the system and renders ®𝜃 square summable.

The government values a representative household’s utility of real balances at time 𝑡

according to the utility function

𝑈 (𝑚𝑡 − 𝑝𝑡) = 𝑢0 + 𝑢1(𝑚𝑡 − 𝑝𝑡) −
𝑢2
2
(𝑚𝑡 − 𝑝𝑡)2, 𝑢0 > 0, 𝑢1 > 0, 𝑢2 > 0 (5)

The money demand function (1) and the utility function (5) imply that

𝑈 (−𝛼𝜃𝑡) = 𝑢0 + 𝑢1(−𝛼𝜃𝑡) −
𝑢2
2
(−𝛼𝜃𝑡)2. (6)

2.1 Friedman’s Optimal Rate of Deflation

According to (6), the bliss level of real balances is 𝑢1
𝑢2

, and the inflation rate that attains
it is:

𝜃𝑡 = 𝜃∗ = − 𝑢1
𝑢2𝛼

(7)

Milton Friedman recommended that the government withdraw and destroy money at a
rate that implies an inflation rate given by (7). In our setting, that could be accomplished
by setting:

𝜇𝑡 = 𝜇∗ = 𝜃∗, 𝑡 ⩾ 0, (8)

where 𝜃∗ is given by equation (7).

Milton Friedman assumed that the taxes that government imposes to collect money at
rate 𝜇𝑡 do not distort economic decisions, e.g., they are lump-sum taxes.

2.2 Calvo’s Distortion

The starting point of Calvo (1978) and Chang (1998) is that such lump-sum taxes are
not available. Instead, the government acquires money by levying taxes that distort
decisions and thereby impose costs on the representative consumer. The government
balances the costs of imposing the distorting taxes against the benefits that expected
deflation generates by raising the representative household’s real money balances. Let’s
see how the government does that.

Via equation (3), a government plan ®𝜇 = {𝜇𝑡}∞𝑡=0 leads to a sequence of inflation outcomes
®𝜃 = {𝜃𝑡}∞𝑡=0. The government incurs social costs 𝑐

2𝜇
2
𝑡 at 𝑡 when it changes the stock
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of nominal money balances at rate 𝜇𝑡. Therefore, the one-period welfare function of a
benevolent government is:

𝑠(𝜃𝑡, 𝜇𝑡) := −𝑟(𝑥𝑡, 𝜇𝑡) =

1

𝜃𝑡


′ 

𝑢0 −𝑢1𝛼
2

−𝑢1𝛼
2 −𝑢2𝛼2

2



1

𝜃𝑡

 −
𝑐

2
𝜇2
𝑡 = −𝑥′𝑡𝑅𝑥𝑡 − 𝑄𝜇2

𝑡 (9)

The government’s time 0 value is

𝑣0 = −
∞∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡) =
∞∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡) (10)

where 𝛽 ∈ (0, 1) is a discount factor.3 The government’s time 𝑡 continuation value 𝑣𝑡 is

𝑣𝑡 =
∞∑
𝑗=0

𝛽 𝑗𝑠(𝜃𝑡+ 𝑗, 𝜇𝑡+ 𝑗). (11)

We can represent dependence of 𝑣0 on ( ®𝜃, ®𝜇) recursively via the difference equation

𝑣𝑡 = 𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1. (12)

It is useful to evaluate (12) under a time-invariant money growth rate 𝜇𝑡 = 𝜇 that,
according to equation (3), would bring forth a constant inflation rate equal to 𝜇. Under
that policy,

𝑣𝑡 = 𝑉 (𝜇) =
𝑠(𝜇, 𝜇)
1 − 𝛽

(13)

for all 𝑡 ⩾ 0.

In summary, a representative agent’s behavior as summarized by the demand function
for money (1) leads to equation (3), which tells how future settings of 𝜇 affect the current
value of 𝜃. Equation (3) maps a policy sequence of money growth rates ®𝜇 = {𝜇𝑡}∞𝑡=0 ∈ 𝐿2

into an inflation sequence ®𝜃 = {𝜃𝑡}∞𝑡=0 ∈ 𝐿2. These in turn induce a discounted value
sequence ®𝑣 = {𝑣𝑡}∞𝑡=0 ∈ 𝐿2 that satisfies recursion (12). Thus, a triple of sequences ( ®𝜇, ®𝜃, ®𝑣)
depends on a sequence ®𝜇 ∈ 𝐿2.

3 Three Timing Protocols

A theory of government decisions will make ®𝜇 endogenous, i.e., a theoretical output
instead of an input. We consider three models of government policy. The first model

3We define 𝑟(𝑥𝑡, 𝜇𝑡) := −𝑠(𝜃𝑡, 𝜇𝑡) in order to represent the government’s maximization problem in
terms of our Python code for solving linear quadratic discounted dynamic programs.
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describes a Ramsey plan chosen by a Ramsey planner. Here a single Ramsey planner
chooses a sequence {𝜇𝑡}∞𝑡=0 once and for all at time 0. The second model describes a Ram-
sey plan chosen by a Ramsey planner constrained to choose a time-invariant 𝜇𝑡.
Here a single Ramsey planner chooses a sequence {𝜇𝑡}∞𝑡=0 once and for all at time 0 subject
to the constraint that 𝜇𝑡 = 𝜇 for all 𝑡 ⩾ 0, The third model describes a Markov perfect
equilibrium. Here there is a sequence of distinct policymakers indexed by 𝑡 = 0, 1, 2, . . ..
A time 𝑡 policymaker chooses 𝜇𝑡 only and forecasts that future government decisions are
unaffected by its choice.4

4 A Ramsey Plan

A Ramsey planner chooses {𝜇𝑡, 𝜃𝑡}∞𝑡=0 to maximize (10) subject to the law of motion (4).
We split this problem into two stages, as in chapter 19 of Ljungqvist and Sargent (2018).
In the first stage, we take the initial inflation rate 𝜃0 as given and solve what looks like an
ordinary LQ discounted dynamic programming problem. In the second stage, we choose
an optimal initial inflation rate 𝜃0.

Define a feasible set of {𝑥𝑡+1, 𝜇𝑡}∞𝑡=0 sequences, with each sequence belonging to 𝐿2:

Ω(𝑥0) = {𝑥𝑡+1, 𝜇𝑡}∞𝑡=0 : 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡, ∀𝑡 ⩾ 0,

where we require that {𝑥𝑡+1, 𝜇𝑡}∞𝑡=0 ∈ 𝐿2 × 𝐿2.

4.1 Subproblem 1

The value function
𝐽 (𝑥0) = max

{𝑥𝑡+1,𝜇𝑡}∞𝑡=0∈Ω(𝑥0)

∞∑
𝑡=0

𝛽𝑡𝑠(𝑥𝑡, 𝜇𝑡) (14)

satisfies the Bellman equation:

𝐽 (𝑥) = max
𝜇,𝑥′

{𝑠(𝑥, 𝜇) + 𝛽𝐽 (𝑥′)}

subject to
𝑥′ = 𝐴𝑥 + 𝐵𝜇

4Sargent (2024) discusses another timing protocol where there is a sequence of separate policymakers.
At time 𝑡, a policymaker chooses only 𝜇𝑡 but believes that its choice of 𝜇𝑡 shapes the representative
agent’s beliefs about future rates of money creation and inflation, and, through them, future government
actions. This is a model of a credible government policy, also known as a sustainable plan. The
relationship between outcomes in this timing protocal and the first (Ramsey) timing protocol and belief
structure is the subject of a literature on sustainable or credible public policies (Chari and Kehoe,
1990; Stokey, 1989, 1991)
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We can map this problem into a linear-quadratic control problem and deduce an optimal
value function 𝐽 (𝑥).

Guessing that 𝐽 (𝑥) = −𝑥′𝑃𝑥 and substituting into the Bellman equation gives rise to the
algebraic matrix Riccati equation satisfied by 𝑃:

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and an optimal decision rule:
𝜇𝑡 = −𝐹𝑥𝑡

where:
𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴 (15)

The value function for a (continuation) Ramsey planner is

𝑣𝑡 = −
[
1 𝜃𝑡

] 
𝑃11 𝑃12

𝑃21 𝑃22



1

𝜃𝑡


or

𝑣𝑡 = −𝑃11 − 2𝑃21𝜃𝑡 − 𝑃22𝜃
2
𝑡

or
𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃

2
𝑡 (16)

where
𝑔0 = −𝑃11, 𝑔1 = −2𝑃21, 𝑔2 = −𝑃22

The Ramsey plan for setting 𝜇𝑡 is

𝜇𝑡 = −
[
𝐹1 𝐹2

] 
1

𝜃𝑡


or

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡 (17)

where 𝑏0 = −𝐹1, 𝑏1 = −𝐹2 and 𝐹 satisfies equation (15).

The Ramsey planner’s decision rule for updating 𝜃𝑡+1 is

𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡 (18)

where
[
𝑑0 𝑑1

]
is the second row of the closed-loop matrix 𝐴 − 𝐵𝐹 for computed in
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subproblem 1 above.

The linear quadratic control problem (14) satisfies regularity conditions that guarantee
that 𝐴 − 𝐵𝐹 is a stable matrix (i.e., its maximum eigenvalue is strictly less than 1 in
absolute value). Consequently, we are assured that

|𝑑1 | < 1, (19)

a stability condition that will play an important role.

It remains for us to describe how the Ramsey planner sets 𝜃0. Subproblem 2 does that.

4.2 Subproblem 2

The value of the Ramsey problem is

𝑉𝑅 = max
𝜃

𝐽 (𝜃)

We abuse notation slightly by writing 𝐽 (𝑥) as 𝐽 (𝜃) and rewrite the above equation as5

𝑉𝑅 = max
𝜃0

𝐽 (𝜃0)

Evidently, 𝑉𝑅 is the maximum value of 𝑣0 defined in equation (10).

Value function 𝐽 (𝜃0) satisfies

𝐽 (𝜃0) = −
[
1 𝜃0

] 
𝑃11 𝑃12

𝑃21 𝑃22




1

𝜃0

 = −𝑃11 − 2𝑃21𝜃0 − 𝑃22𝜃
2
0

The first-order necessary condition for maximizing 𝐽 (𝜃0) with respect to 𝜃0 is

−2𝑃21 − 2𝑃22𝜃0 = 0

which implies
𝜃0 = 𝜃𝑅0 = −𝑃21

𝑃22

5Since 𝑥 =


1

𝜃

 , it follows that 𝜃 is the only component of 𝑥 that can possibly vary.
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4.3 Representation of Ramsey Plan

The preceding calculations indicate that we can represent a Ramsey plan ®𝜇 recursively
with the following system created in the spirit of Chang (1998):

𝜃0 = 𝜃𝑅0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡

𝑣𝑡 = 𝑔0 + 𝑔1𝜃𝑡 + 𝑔2𝜃
2
𝑡

𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡, 𝑑0 > 0, 𝑑1 ∈ (0, 1)

(20)

where 𝑏0, 𝑏1, 𝑔0, 𝑔1, 𝑔2 are positive parameters. From condition (19), we know that
|𝑑1 | < 1.

To interpret system (20), think of the sequence {𝜃𝑡}∞𝑡=0 as a sequence of synthetic promised
inflation rates. For some purposes, we can think of these promised inflation rates just
as computational devices for generating a sequence ®𝜇 of money growth rates that when
substituted into equation (3), generate actual rates of inflation. It can be verified that
if we substitute a plan ®𝜇 = {𝜇𝑡}∞𝑡=0 that satisfies these equations into equation (3), we
obtain the same sequence ®𝜃 generated by the system (20).6 Thus, within the Ramsey
plan, promised inflation equals actual inflation.

System (20) implies that under the Ramsey plan

𝜃𝑡 = 𝑑0

(1 − 𝑑𝑡1
1 − 𝑑1

)
+ 𝑑𝑡1𝜃𝑅0 , (21)

Because 𝑑1 ∈ (0, 1), it follows from (21) that as 𝑡 → ∞, 𝜃𝑅𝑡 converges to

lim
𝑡→+∞

𝜃𝑅𝑡 = 𝜃𝑅∞ =
𝑑0

1 − 𝑑1
. (22)

Furthermore, we shall see that 𝜃𝑅𝑡 converges to 𝜃𝑅∞ from above.

Meanwhile, 𝜇𝑡 varies over time according to:

𝜇𝑡 = 𝑏0 + 𝑏1𝑑0

(1 − 𝑑𝑡1
1 − 𝑑1

)
+ 𝑏1𝑑

𝑡
1𝜃

𝑅
0 . (23)

Variation of ®𝜇𝑅, ®𝜃𝑅, ®𝑣𝑅 over time are symptoms of time inconsistency. The Ramsey planner
reaps immediate benefits from promising lower inflation later to be achieved by costly
distorting taxes. These benefits are intermediated by reductions in expected inflation

6An application of the Big 𝐾, little 𝑘 trick discussed in chapter 8 and other chapters of Ljungqvist
and Sargent (2018) is at work here.
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that precede the reductions in money creation rates that rationalize them, as indicated
by equation (3).

5 Constrained-to-Constant-Growth-Rate Ramsey Plan

We can use brute force to create a government plan that is time consistent, i.e., that is
time-invariant. We simply constrain a planner to choose a time-invariant money growth
rate 𝜇 so that

𝜇𝑡 = 𝜇, ∀𝑡 ⩾ 0.

We assume that the government knows the perfect foresight outcome implied by equation
(2) that 𝜃𝑡 = 𝜇 when 𝜇𝑡 = 𝜇 for all 𝑡 ⩾ 0. The value of the plan is

𝑉 (𝜇) = (1 − 𝛽)−1
[
𝑈 (−𝛼𝜇) − 𝑐

2
(𝜇)2

]
(24)

With the quadratic form (5) for the utility function 𝑈, the maximizing 𝜇 is

𝜇𝐶𝑅 = max
𝜇

𝑉 (𝜇) = − 𝛼𝑢1
𝛼2𝑢2 + 𝑐

. (25)

The optimal value attained by a constrained to constant 𝜇 Ramsey planner is

𝑉 (𝜇𝐶𝑅) ≡ 𝑉𝐶𝑅 = (1 − 𝛽)−1
[
𝑈 (−𝛼𝜇𝐶𝑅) − 𝑐

2
(𝜇𝐶𝑅)2

]
. (26)

6 Markov Perfect Governments

One can assume another timing protocol in order to render government decisions time-
consistent. Consider a sequence of government policymakers. A time 𝑡 government
chooses 𝜇𝑡 and expects all future governments to set 𝜇𝑡+ 𝑗 = 𝜇. When it sets 𝜇𝑡, a govern-
ment at 𝑡 believes that 𝜇 is unaffected by its choice of 𝜇𝑡.

According to equation (3), the time 𝑡 rate of inflation is then:

𝜃𝑡 =
1

1 + 𝛼𝜇𝑡 +
𝛼

1 + 𝛼𝜇, (27)

which expresses inflation 𝜃𝑡 as a geometric weighted average of the money growth today
𝜇𝑡 and money growth from tomorrow onward 𝜇.

Given 𝜇, the time 𝑡 government chooses 𝜇𝑡 to maximize:

𝐻 (𝜇𝑡, 𝜇) = 𝑈 (−𝛼𝜃𝑡) −
𝑐

2
𝜇2
𝑡 + 𝛽𝑉 (𝜇) (28)
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where 𝑉 (𝜇) is given by formula (13) for the time 0 value 𝑣0 of recursion (12) under a
money supply growth rate that is forever constant at 𝜇.

Substituting (27) into (28) and expanding gives:

𝐻 (𝜇𝑡, 𝜇) = 𝑢0 + 𝑢1

(
− 𝛼2

1 + 𝛼𝜇 − 𝛼

1 + 𝛼𝜇𝑡
)
− 𝑢2

2

(
− 𝛼2

1 + 𝛼𝜇 − 𝛼

1 + 𝛼𝜇𝑡
)2

− 𝑐

2
𝜇2
𝑡 + 𝛽𝑉 (𝜇)

(29)

The first-order necessary condition for maximizing 𝐻 (𝜇𝑡, 𝜇) with respect to 𝜇𝑡 is:

− 𝛼

1 + 𝛼𝑢1 − 𝑢2(−
𝛼2

1 + 𝛼𝜇 − 𝛼

1 + 𝛼𝜇𝑡) (−
𝛼

1 + 𝛼) − 𝑐𝜇𝑡 = 0

Rearranging we get the time 𝑡 government’s best response map

𝜇𝑡 = 𝑓 (𝜇)

where
𝑓 (𝜇) = −𝑢1

1+𝛼
𝛼 𝑐 + 𝛼

1+𝛼𝑢2
− 𝛼2𝑢2[ 1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼𝑢2

]
(1 + 𝛼)

𝜇

A Markov Perfect Equilibrium (MPE) outcome 𝜇𝑀𝑃𝐸 is a fixed point of the best response
map:

𝜇𝑀𝑃𝐸 = 𝑓 (𝜇𝑀𝑃𝐸)

Calculating 𝜇𝑀𝑃𝐸, we find
𝜇𝑀𝑃𝐸 = − 𝛼𝑢1

𝛼2𝑢2 + (1 + 𝛼)𝑐 . (30)

The value of a MPE is:
𝑉𝑀𝑃𝐸 =

𝑠(𝜇𝑀𝑃𝐸, 𝜇𝑀𝑃𝐸)
1 − 𝛽

(31)

or 𝑉𝑀𝑃𝐸 = 𝑉 (𝜇𝑀𝑃𝐸), where 𝑉 (·) is given by formula (13).

Under the Markov perfect timing protocol, a government takes 𝜇 as given when it chooses
𝜇𝑡, and we equate 𝜇𝑡 = 𝜇 only after we have computed a time 𝑡 government’s first-order
condition for 𝜇𝑡.

7 Outcomes under Three Timing Protocols

Let’s compare outcome sequences {𝜃𝑡, 𝜇𝑡} under three timing protocols associated with
(1) a standard Ramsey plan with its time-varying {𝜃𝑡, 𝜇𝑡} sequences, (2) a Markov perfect
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equilibrium, with its time-invariant {𝜃𝑡, 𝜇𝑡} sequences, and (3) a Ramsey plan in which
the planner is restricted to choose a time-invariant 𝜇𝑡 = 𝜇 for all 𝑡 ⩾ 0.

Figure 1 plots policy functions for a continuation Ramsey planner with 𝛽 = 0.75, 𝑐 = 2 and
𝛼 = 1, 𝑢0 = 1, 𝑢1 = 0.5, 𝑢2 = 3. The dotted line is the 45-degree line. The blue line shows

Figure 1: 𝜇𝑡 and 𝜃𝑡+1 as functions of 𝜃

the choice of 𝜃𝑡+1 = 𝜃′ chosen by a continuation Ramsey planner who inherits 𝜃𝑡 = 𝜃. The
green line shows a continuation Ramsey planner’s choice of 𝜇𝑡 = 𝜇 as a function of an
inherited 𝜃𝑡 = 𝜃.

Dynamics under the Ramsey plan are confined to 𝜃 ∈
[
𝜃𝑅∞, 𝜃

𝑅
0
]
. The blue and green lines

intersect each other and the 45-degree line at 𝜃 = 𝜃𝑅∞.

Notice that for 𝜃 ∈
(
𝜃𝑅∞, 𝜃

𝑅
0
]

• 𝜃′ < 𝜃 because the blue line is below the 45-degree line, and

• 𝜇 > 𝜃 because the green line is above the 45-degree line.

It follows that under the Ramsey plan {𝜃𝑡} and {𝜇𝑡} both converge monotonically from
above to 𝜃𝑅∞.

The orange curve in Figure 2 plots the Ramsey planner’s value function 𝐽 (𝜃). We know
that 𝐽 (𝜃) is maximized at 𝜃𝑅0 , the best time 0 promised inflation rate. The figure indicates
the limiting value 𝜃𝑅∞, the limiting value of promised inflation rate 𝜃𝑡 under the Ramsey
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plan as 𝑡 → +∞. It also indicates an MPE inflation rate 𝜃𝑀𝑃𝐸, the inflation 𝜃𝐶𝑅 under
a Ramsey plan constrained to a constant money creation rate, and a bliss inflation 𝜃∗.
Notice that:

𝜃∗ < 𝜃𝑅∞ < 𝜃𝐶𝑅 < 𝜃𝑅0 < 𝜃𝑀𝑃𝐸,

which suggests that

• 𝜃𝑅0 < 𝜃𝑀𝑃𝐸: the MPE inflation rate exceeds the initial Ramsey inflation rate,

• 𝜃𝑅∞ < 𝜃𝐶𝑅 < 𝜃𝑅0 : the initial Ramsey deflation rate, and the associated tax distortion
cost 𝑐𝜇2

0 is less than the limiting Ramsey inflation rate 𝜃𝑅∞ and the associated tax
distortion cost 𝜇2

∞,

• 𝜃∗ < 𝜃𝑅∞: the limiting Ramsey inflation rate exceeds the bliss level of inflation

The blue curve in Figure 2 plots the value function of a Ramsey planner who is constrained
to choose a constant 𝜇. Since a time-invariant 𝜇 implies a time-invariant 𝜃, we take the
liberty of labeling this value function 𝑉 (𝜃). The graph reveals interesting relationships
between the value functions 𝐽 (𝜃) ⩾ 𝑉 (𝜃).

Figure 2: Value functions 𝐽 and 𝑉 over 𝜃

Furthermore, notice that

• the orange 𝐽 (𝜃) value function lies above the blue 𝑉 value function except at 𝜃 = 𝜃𝑅∞;
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• the maximizer 𝜃𝑅0 of 𝐽 (𝜃) occurs at the top of the orange curve;

• the maximizer 𝜃𝐶𝑅 of 𝑉 (𝜃) occurs at the top of the blue curve;

• 𝐽 (𝜃𝑅∞) = 𝑉 (𝜃𝑅∞);

• the “timeless perspective” inflation and money creation rate 𝜃𝑅∞ occurs where 𝐽 (𝜃)
is tangent to 𝑉 (𝜃);

• the Markov perfect inflation and money creation rate 𝜃𝑀𝑃𝐸 exceeds 𝜃𝑅0 ;

• the value 𝑉 (𝜃𝑀𝑃𝐸) of the Markov perfect rate of money creation rate 𝜃𝑀𝑃𝐸 is less
than the value 𝑉 (𝜃𝑅∞) of the worst continuation Ramsey plan; and

• the continuation value 𝐽 (𝜃𝑀𝑃𝐸) of the Markov perfect rate of money creation rate
𝜃𝑀𝑃𝐸 is greater than the value 𝑉 (𝜃𝑅∞) and of the continuation value 𝐽 (𝜃𝑅∞) of the
worst continuation Ramsey plan.

8 Plausibility of a Ramsey Plan?

Many economists doubt the relevance of a timing protocol in which a plan for setting
a sequence of policy variables is chosen once and for all at time 0. They instead prefer
the sequential timing protocol that prevails in a Markov perfect equilibrium. But there
are superior plans that, like a Markov perfect equilibrium, provide no incentives to de-
viate from the plan. Research of Abreu (1988), Chari and Kehoe (1990), Stokey (1989),
and Stokey (1991) applied by Sargent (2024) in the present context described conditions
under which a Ramsey plan emerges from a sequential timing protocol for government
decision makers. To accomplish that, it is necessary to expand a description of a plan to
include a coherent set of beliefs that deter deviating from it.
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